Crossed products and cleft extensions for coquasi-Hopf algebras

Adriana Balan

University Politehnica of Bucharest

July 2008

Adriana Balan (University Politehnica of Buc/Crossed products and cleft extensions for coq

July 2008 1 / 35

Summary

- Coquasi-bialgebras, crossed products and various associated categories
- **2** Cleft extensions and crossed products
 - Computation of some crossed products in low dimension

Coquasi-bialgebras and coquasi-Hopf algebras

- (Majid (1992), Panaite, Ștefan(1997)) H coquasi-bialgebra
 - coassociative coalgebra Δ , ϵ
 - \exists unit and multiplication, no longer associative
 - associativity of multiplication controlled by $\omega \in (H \otimes H \otimes H)^*$

Coquasi-bialgebras and coquasi-Hopf algebras

- (Majid (1992), Panaite, Ștefan(1997)) H coquasi-bialgebra
 - coassociative coalgebra Δ , ϵ
 - \exists unit and multiplication, no longer associative
 - associativity of multiplication controlled by $\omega \in (H \otimes H \otimes H)^*$
- Monoidal category (but not strict!) of comodules (\mathcal{M}^H, \otimes)

Coquasi-bialgebras and coquasi-Hopf algebras

- (Majid (1992), Panaite, Ștefan(1997)) H coquasi-bialgebra
 - coassociative coalgebra Δ , ϵ
 - \exists unit and multiplication, no longer associative
 - associativity of multiplication controlled by $\omega \in (H \otimes H \otimes H)^*$
- Monoidal category (but not strict!) of comodules (\mathcal{M}^H, \otimes)
- H coquasi-Hopf algebra if it exists also an antimorphism of coalgebras (antipode) S and elements α, β ∈ H* with some properties which ensure the rigidity of M^H_{f dim}

H coquasi-bialgebra, R associative algebra

• Weak action $\circ: H \otimes R \longrightarrow R$:

$$h \circ (rs) = (h_1 \circ r)(h_2 \circ s), \quad h \circ 1_R = \varepsilon(h)1_R$$

• Convolution invertible map $\sigma: H \otimes H \longrightarrow R$.

Definition

The crossed product $R \#_{\sigma} H$ is $R \otimes H$ with multiplication

$$(r\#_{\sigma}h)(s\#_{\sigma}g) = r(h_1 \circ s)\sigma(h_2, g_1)\#_{\sigma}h_3g_2$$

Theorem

 $R \#_{\sigma} H$ is an H-comodule algebra (i.e. algebra in monoidal category \mathcal{M}^{H}) with unit $1_{R} \#_{\sigma} 1_{H}$ and coaction $I_{R} \otimes \Delta$ if and only if

$$\begin{aligned} 1_{H} \circ r &= r \\ [h_{1} \circ (g_{1} \circ r)]\sigma(h_{2}, g_{2}) &= \sigma(h_{1}, g_{1})[(h_{2}g_{2}) \circ r] \\ \sigma(h, 1) &= \sigma(1, h) = \varepsilon(h)1_{R} \\ [h_{1} \circ \sigma(g_{1}, l_{1})]\sigma(h_{2}, g_{2}l_{2}) &= \sigma(h_{1}, g_{1})\sigma(h_{2}g_{2}, l_{1})\omega^{-1}(h_{3}, g_{3}, l_{2}) \end{aligned}$$

In this case we say that (R, \circ, σ) form a **crossed** *H*-system.

- Any crossed product $R \#_{\sigma} H$ by a bialgebra H
- Trivial cocycle implies ω trivial (H is a bialgebra) and R is a left H-module algebra ⇒ usual smash product R#H
- Trivial weak action implies Im σ ⊆ Z(R) and ω = ∂σ ⇒ twisted product R_σ[H] with multiplication
 (r#_σh)(s#_σg) = rsσ(h₁, g₁)#_σh₂g₂
- $R = \Bbbk$: weak action must be trivial $\implies H$ is a deformation of a bialgebra by the twist σ

• H coquasi-bialgebra, $(H^*, *, \rightharpoonup)$ associative algebra

- H coquasi-bialgebra, $(H^*, *, \rightharpoonup)$ associative algebra
 - $\sigma: H \otimes H \longrightarrow H^*$, $\sigma(h,g)(k) = \omega^{-1}(k, h, g)$

- H coquasi-bialgebra, $(H^*, *, \rightharpoonup)$ associative algebra
 - $\sigma: H \otimes H \longrightarrow H^*$, $\sigma(h, g)(k) = \omega^{-1}(k, h, g)$
 - Crossed product $H^* \#_{\sigma} H$ generalizes Heisenberg double

- H coquasi-bialgebra, $(H^*, *, \rightharpoonup)$ associative algebra
 - $\sigma: H \otimes H \longrightarrow H^*$, $\sigma(h,g)(k) = \omega^{-1}(k,h,g)$
 - Crossed product $H^* \#_{\sigma} H$ generalizes Heisenberg double
- H coquasi-bialgebra, A comodule algebra

- H coquasi-bialgebra, $(H^*, *, \rightharpoonup)$ associative algebra
 - $\sigma: H \otimes H \longrightarrow H^*$, $\sigma(h,g)(k) = \omega^{-1}(k,h,g)$
 - Crossed product $H^* \#_{\sigma} H$ generalizes Heisenberg double
- H coquasi-bialgebra, A comodule algebra
 - Hom(H, A) associative algebra

 $(\lambda \circledast \kappa)(h) = \lambda(\kappa(h_3)_2 h_2)_0 \kappa(h_3)_0 \omega^{-1}(\lambda(\kappa(h_3)_2 h_2)_1, \kappa(h_3)_1, h_1)$

- H coquasi-bialgebra, $(H^*, *, \rightharpoonup)$ associative algebra
 - $\sigma: H \otimes H \longrightarrow H^*$, $\sigma(h,g)(k) = \omega^{-1}(k,h,g)$
 - Crossed product $H^* \#_{\sigma} H$ generalizes Heisenberg double
- H coquasi-bialgebra, A comodule algebra
 - Hom(H, A) associative algebra

 $(\lambda \circledast \kappa)(h) = \lambda(\kappa(h_3)_2 h_2)_0 \kappa(h_3)_0 \omega^{-1}(\lambda(\kappa(h_3)_2 h_2)_1, \kappa(h_3)_1, h_1)$

Weak action

$$(h \circ \lambda)(g) = \lambda(gh)$$

Cocycle

$$\sigma(h,g)(k) = \omega^{-1}(k,h,g)\mathbf{1}_A$$

Crossed system $(Hom(H, A), \circ, \sigma)$

- H coquasi-bialgebra, $(H^*, *, \rightharpoonup)$ associative algebra
 - $\sigma: H \otimes H \longrightarrow H^*$, $\sigma(h,g)(k) = \omega^{-1}(k,h,g)$
 - Crossed product $H^* \#_{\sigma} H$ generalizes Heisenberg double
- H coquasi-bialgebra, A comodule algebra
 - Hom(H, A) associative algebra

 $(\lambda \circledast \kappa)(h) = \lambda(\kappa(h_3)_2 h_2)_0 \kappa(h_3)_0 \omega^{-1}(\lambda(\kappa(h_3)_2 h_2)_1, \kappa(h_3)_1, h_1)$

Weak action

$$(h\circ\lambda)(g)=\lambda(gh)$$

Cocycle

$$\sigma(h,g)(k)=\omega^{-1}(k,h,g)\mathbf{1}_A$$

Crossed system $(Hom(H, A), \circ, \sigma)$

• Possible duality theorem $(A \# H^*) \# H \simeq M_{\dim_{\Bbbk} H}(A)$

- $R = \Bbbk$ with trivial action, H_{σ} deformation of a bialgebra $H \Longrightarrow$ crossed product $\Bbbk \#_{\sigma^{-1}}(H_{\sigma})$
- $H = \Bbbk G$, for G finite group \implies quasialgebras $\Bbbk \#_{\sigma^{-1}}(\Bbbk G_{\sigma})$
- $G = (\mathbb{Z}_2)^n \Longrightarrow$ all Cayley and Clifford algebras can be obtained as $\Bbbk \#_{\sigma^{-1}}(\Bbbk (\mathbb{Z}_2)^n)_{\sigma}$

H coquasi-bialgebra, R associative algebra

 TFAE: There exist a weak action of H on R and a convolution invertible map σ : H ⊗ H → R such that (R, ∘, σ) is crossed H-system 	Proposition
	FAE:

Proposition
FAE:
 There exist a weak action of H on R and a convolution invertible map σ : H ⊗ H → R such that (R, ∘, σ) is crossed H-system (M_R, ⊗) is right ^HM-category
(\mathcal{M}_R, \otimes) is right $\mathcal{M}_{\mathcal{M}}$ -category

Prop	position
TFA	<i>E:</i>
	There exist a weak action of H on R and a convolution invertible map $\sigma: H \otimes H \longrightarrow R$ such that (R, \circ, σ) is crossed H-system
2	$(\mathcal{M}_{\mathcal{R}},\otimes)$ is right ^H \mathcal{M} -category
3	$(_{R}\mathcal{M},\otimes)$ is right \mathcal{M}^{H} -category

Proposition	
TFAE:	
 There exist a weak action of H on R and a convolution invertible m σ : H ⊗ H → R such that (R, ∘, σ) is crossed H-system (M_R, ⊗) is right ^HM-category (_RM, ⊗) is right M^H-category (M^H_R, ⊗) is right ^HM^H-category 	ap

Proposition
TFAE:
• There exist a weak action of H on R and a convolution invertible map $\sigma: H \otimes H \longrightarrow R$ such that (R, \circ, σ) is crossed H-system
2 (\mathcal{M}_R, \otimes) is right ^H \mathcal{M} -category
3 $(_{R}\mathcal{M},\otimes)$ is right \mathcal{M}^{H} -category
• $(\mathcal{M}^{H}_{R},\otimes)$ is right ${}^{H}\mathcal{M}^{H}$ -category
9 $({}^{H}\mathcal{M}_{R},\otimes)$ is right ${}^{H}\mathcal{M}^{H}$ -category

Crossed products viewed towards monoidal categories Correspondence of structures

• From a crossed system (R, \circ, σ)

$$(M, V) \in \mathcal{M}_R \times {}^H \mathcal{M} \longrightarrow M \otimes V \in \mathcal{M}_R$$
$$(m \otimes v)r = m(v_{-1} \circ r) \otimes v_0$$
$$\Psi_{M,V,W} : (M \otimes V) \otimes W \longrightarrow M \otimes (V \otimes W)$$
$$(m \otimes v) \otimes w \longrightarrow m\sigma(v_{-1}, w_{-1}) \otimes (v_0 \otimes w_0)$$

• From a right ${}^{H}\mathcal{M}$ -category action $(\mathcal{M}_{R},\otimes,\Psi)$

$$\begin{aligned} h \circ r &= (I_R \otimes \varepsilon)((1_R \otimes h)r) \\ \sigma(h, g) &= (I_R \otimes \varepsilon \otimes \varepsilon) \Psi_{R,H,H}(1_R \otimes h \otimes g) \end{aligned}$$

Twist invariance of the crossed product

(changing the monoidal category)

- *H* coquasi-bialgebra
- τ twist on H
- (R, \circ, σ) crossed *H*-system

- Deformed coquasi-bialgebra $H_{ au}$
- Deformed cocycle $\sigma \tau^{-1}$
- $(R, \circ, \sigma \tau^{-1})$ crossed H_{τ} -system

Proposition

$$R\#_{\sigma\tau^{-1}}H_{\tau}=(R\#_{\sigma}H)_{\tau^{-1}}$$

Twist transformation of the crossed product

(changing the action of the monoidal category)

- H coquasi-bialgebra
- (R, \circ, σ) crossed *H*-system
- $v: H \longrightarrow R$ convolution invertible map

- New weak action \circ_v and new convolution invertible map $\sigma_v: H \otimes H \longrightarrow R$
- (R, \circ_v, σ_v) crossed *H*-system
 - $R #_{\sigma_v} H$ twist transformation of $R #_{\sigma} H$

Proposition

- H coquasi-bialgebra
- R associative algebra
- Two crossed systems (R, \circ_1, σ_1) and (R, \circ_2, σ_2)

 $R \#_{\sigma_1} H \simeq R \#_{\sigma_2} H$ isomorphism of right H-comodule algebras, left *R*-modules $\iff R \#_{\sigma_2} H$ is a twist transformation of $R \#_{\sigma_1} H$ • \mathfrak{H} f. d. quasi-bialgebra $(\mathcal{A}, \rho, \phi_{\rho})$ \mathfrak{H} -comodule algebra \Downarrow

- \mathfrak{H} f. d. quasi-bialgebra $(\mathcal{A}, \rho, \phi_{\rho})$ \mathfrak{H} -comodule algebra \Downarrow
- Cocycle $\sigma(\mathfrak{h}^*, \mathfrak{g}^*) = x_{\rho}^1 \mathfrak{h}^*(x_{\rho}^2) \mathfrak{g}^*(x_{\rho}^3) \iff$ Weak action $\mathfrak{h}^* \circ r = (I \otimes \mathfrak{h}^*)\rho(r)$ Crossed \mathfrak{H}^* -system $(\mathcal{A}, \circ, \sigma)$ Crossed product $\mathcal{A} \#_{\sigma} \mathfrak{H}^* = \mathcal{A} \overline{\#} \mathfrak{H}^*$

- \mathfrak{H} f. d. quasi-bialgebra $(\mathcal{A}, \rho, \phi_{\rho})$ \mathfrak{H} -comodule algebra \Downarrow
- Cocycle $\sigma(\mathfrak{h}^*, \mathfrak{g}^*) = x_{\rho}^1 \mathfrak{h}^*(x_{\rho}^2) \mathfrak{g}^*(x_{\rho}^3) \iff$ Weak action $\mathfrak{h}^* \circ r = (I \otimes \mathfrak{h}^*)\rho(r)$ Crossed \mathfrak{H}^* -system $(\mathcal{A}, \circ, \sigma)$ Crossed product $\mathcal{A} \#_{\sigma} \mathfrak{H}^* = \mathcal{A} \overline{\#} \mathfrak{H}^*$
- *H* f. d. coquasi-bialgebra (R, \circ, σ) assoc. algebra \Downarrow

- \mathfrak{H} f. d. quasi-bialgebra $(\mathcal{A}, \rho, \phi_{\rho})$ \mathfrak{H} -comodule algebra \Downarrow
- Cocycle $\sigma(\mathfrak{h}^*, \mathfrak{g}^*) = x_{\rho}^1 \mathfrak{h}^*(x_{\rho}^2) \mathfrak{g}^*(x_{\rho}^3) \iff$ Weak action $\mathfrak{h}^* \circ r = (I \otimes \mathfrak{h}^*)\rho(r)$ Crossed \mathfrak{H}^* -system $(\mathcal{A}, \circ, \sigma)$ Crossed product $\mathcal{A} \#_{\sigma} \mathfrak{H}^* = \mathcal{A} \overline{\#} \mathfrak{H}^*$
- *H* f. d. coquasi-bialgebra (R, \circ, σ) assoc. algebra \Downarrow
- Coaction $\rho(r) = \sum_{i=1}^{\dim_{\mathbb{R}} H} e_i \circ r \otimes e^i$ Associator $\phi_{\rho} = \sum_{i,j=1}^{\dim_{\mathbb{R}} H} \sigma^{-1}(e_i, e_j) \otimes e^i \otimes e^j$ $H^*\text{-comodule algebra } (R, \rho, \phi_{\rho})$

Definition

Category of **right coquasi-Hopf modules** $(\mathcal{M}_{R}^{H})_{H}$ is the category of right *H*-modules in \mathcal{M}_{R}^{H} Category of **left coquasi-Hopf modules** $_{R}^{H}\mathcal{M}_{H}$ is the category of right *H*-modules in $_{R}^{H}\mathcal{M}$

Theorem

H coquasi-bialgebra, (R, \circ, σ) crossed H-system. Then the category of coquasi-Hopf modules is isomorphic to the category of relative $(H, R\#_{\sigma}H)$ -Hopf modules

$$\begin{aligned} (\mathcal{M}_{R}^{H})_{H} &\simeq & \mathcal{M}_{R\#_{\sigma}H}^{H} \\ & {}_{R}^{H}\mathcal{M}_{H} &\simeq & {}_{R\#_{\sigma}H}\mathcal{M}^{H} \end{aligned}$$

Second isomorphism much more complicated and uses antipode (bijective!) and Drinfeld's twist.

Coquasi-Hopf modules

 ${\mathcal A}$ right ${\mathfrak H}$ -comodule algebra

Category of two-sided Hopf modules ${}_{\mathfrak{H}}\mathcal{M}^{\mathfrak{H}}_{\mathcal{A}}$

- Isomorphism of categories ${}_{\mathfrak{H}}\mathcal{M}^{\mathfrak{H}}_{\mathcal{A}} \simeq {}_{\mathfrak{H}}\mathcal{M}_{\mathcal{A}\overline{\#}\mathfrak{H}^{\mathfrak{H}}}$
- For H = S^{*} and R = A
 Isomorphism between the two-sided Hopf modules and coquasi-Hopf modules

$${}_{\mathfrak{H}}\mathcal{M}^{\mathfrak{H}}_{\mathcal{A}}\simeq (\mathcal{M}^{\mathfrak{H}^*}_{\mathcal{A}})_{\mathfrak{H}^*}$$

Not explained by an algebra-coalgebra duality between \mathfrak{H} and $H = \mathfrak{H}^*$ in monoidal category $\mathfrak{H}_{\mathfrak{H}}$

• Our formulas more natural, not requiring finite dimension or existence of the antipode

- Now H coquasi-Hopf algebra (with bijective antipode in left case) $M \in {}^{H}_{R}\mathcal{M}_{H}$ $M^{coH} = \{m \in M | \lambda(m) = 1_{H} \otimes m\}$ $M \in (\mathcal{M}^{H}_{R})_{H}$ $M^{coH} = \{m \in M | \rho(m) = m \otimes 1_{H}\}$
- Projection on coinvariants

$$M \in {}^{H}_{R}\mathcal{M}_{H} \qquad \Pi_{I}(m) = m_{0} \odot [\alpha \rightharpoonup S^{-1}(m_{-1})]$$
$$M \in (\mathcal{M}_{R}^{H})_{H} \qquad \Pi_{r}(m) = m_{0} \odot S(m_{1} \leftarrow \beta)$$

Theorem

For any coquasi-Hopf algebra H (with bijective antipode in the left case) and any crossed system (R, \circ, σ) , the category of coquasi-Hopf modules is equivalent to the category of R-modules

$$\mathcal{M}_{R} \stackrel{-\otimes H}{\underset{(-)^{coH}}{\rightleftharpoons}} (\mathcal{M}_{R}^{H})_{H} \qquad {_{R}\mathcal{M}} \stackrel{-\otimes H}{\underset{(-)^{coH}}{\rightrightarrows}} {_{R}^{H}\mathcal{M}_{H}}$$

- *H* coquasi-bialgebra, (R, \circ, σ) crossed system $\iff \mathcal{M}_R$ is right ${}^{H}\mathcal{M}$ -category with tensor product over the base field
- C left H-comodule coalgebra \implies right C-comodules in \mathcal{M}_R
- Category of Doi-Hopf modules \mathcal{M}_R^C

...and a coring associated to a crossed system

• *H* coquasi-bialgebra, (R, \circ, σ) crossed system
...and a coring associated to a crossed system

• *H* coquasi-bialgebra, (R, \circ, σ) crossed system

Proposition

 $\mathcal{C} = {}_{\bullet}R_{\bullet} \otimes C_{\bullet}$ is an *R*-coring and the category of Doi-Hopf modules $\mathcal{M}_{R}^{\mathcal{C}}$ is isomorphic to the category $\mathcal{M}^{\mathcal{C}}$ of right comodules over \mathcal{C}

...and a coring associated to a crossed system

• *H* coquasi-bialgebra, (R, \circ, σ) crossed system

Proposition

 $\mathcal{C} = {}_{\bullet}R_{\bullet} \otimes C_{\bullet}$ is an *R*-coring and the category of Doi-Hopf modules $\mathcal{M}_{R}^{\mathcal{C}}$ is isomorphic to the category $\mathcal{M}^{\mathcal{C}}$ of right comodules over \mathcal{C}

Problem

For $C = \overline{H}$, possible connection with Galois theory for corings

...and a coring associated to a crossed system

• *H* coquasi-bialgebra, (R, \circ, σ) crossed system

Proposition

 $\mathcal{C} = {}_{\bullet}R_{\bullet} \otimes C_{\bullet}$ is an *R*-coring and the category of Doi-Hopf modules $\mathcal{M}_{R}^{\mathcal{C}}$ is isomorphic to the category $\mathcal{M}^{\mathcal{C}}$ of right comodules over \mathcal{C}

Problem

For $C = \overline{H}$, possible connection with Galois theory for corings

Problem

Particular case $R = H^*$ and $C = \overline{H}$. Then what is the category of Doi-Hopf modules $\mathcal{M}_{H^*}^{\overline{H}}$?

H coquasi-bialgebra

- A right *H*-comodule algebra *A* is an algebra in the monoidal category \mathcal{M}^{H} .
- A is no longer associative!
- Algebra (associative) of coinvariants $B = A^{coH}$

Definition

A right H-comodule algebra is cleft if $\exists \gamma, \delta : H \longrightarrow A$ such that

$$\begin{split} \rho(\gamma(h)) &= \gamma(h_1) \otimes h_1 \qquad \rho(\delta(h)) = \delta(h_2) \otimes S(h_1) \\ \delta(h_1)\gamma(h_2) &= \alpha(h)\mathbf{1}_A \qquad \gamma(h_1)\beta(h_2)\delta(h_3) = \varepsilon(h)\mathbf{1}_A \end{split}$$

July 2008 23 / 35

Proposition

There is a Morita context $\mathbb{M}(A)$ with

- rings $Hom^H(\overline{H}, A)$ and Hom(H, B)
- bimodules $Hom^{H}(H, A)$ and $Hom^{H}(H^{S}, A)$
- connecting morphisms

$$(-,-) : Hom^{H}(H, A) \otimes_{Hom^{H}(\overline{H}, A)} Hom^{H}(H^{S}, A) \longrightarrow Hom(H, B)$$

$$(\mathfrak{p}, \mathfrak{q})(h) = \mathfrak{p}(h_{1})\beta(h_{2})\mathfrak{q}(h_{3})$$

$$[-,-] : Hom^{H}(H^{S}, A) \otimes_{Hom(H,B)} Hom^{H}(H, A) \longrightarrow Hom^{H}(\overline{H}, A)$$

$$[\mathfrak{q}, \mathfrak{p}](h) = \mathfrak{q}(h_{1})\mathfrak{p}(h_{2})$$

Theorem

H coquasi-Hopf algebra, A right H-comodule algebra \Longrightarrow

First Morita map [,] is surjective ⇔ { B ⊆ A is Galois ∃ n > 0, s. t. A is direct summand in (•B ⊗ H•)ⁿ
Strict Morita context ⇔ { • B ⊆ A is Galois • ∃ n > 0, s. t. A is direct summand in (•B ⊗ H•)ⁿ • ∃ n, r > 0 s. t. A is direct summand in (•B ⊗ H•)ⁿ and • B ⊗ H• is direct summand in A^r
B ⊂ A cleft extension ⇒ strict Morita context.

Theorem

H coquasi-Hopf algebra, A right H-comodule algebra. TFAE:

B ⊆ A is cleft
 A ≃ B#_σH as right H-comodule algebras, left B-modules

Cleaving maps

$$\gamma(h) = \mathbf{1}_{\mathcal{A}} \#_{\sigma} h \qquad \delta(h) = \sigma^{-1}(S(h_2), h_3 \leftarrow \alpha) \#_{\sigma} S(h_1)$$

Weak action and cocycle

$$\begin{aligned} h \circ b &= \gamma(h_1)b\delta(h_2 \leftarrow \beta) \\ \sigma(h,g) &= [\gamma(h_1)\gamma(g_1)]\delta((h_2g_2) \leftarrow \beta) \end{aligned}$$

• For Hopf algebra H, A = H is cleft H-comodule algebra extension of \Bbbk , in particular Galois

- For Hopf algebra H, A = H is cleft H-comodule algebra extension of k, in particular Galois
- For coquasi-Hopf algebras, does not work

- For Hopf algebra H, A = H is cleft H-comodule algebra extension of k, in particular Galois
- For coquasi-Hopf algebras, does not work
- If yes, it would mean that $A = \Bbbk \#_{\sigma} H$, impossible unless H is a deformation of a Hopf algebra

- For Hopf algebra H, A = H is cleft H-comodule algebra extension of k, in particular Galois
- For coquasi-Hopf algebras, does not work
- If yes, it would mean that $A = \Bbbk \#_{\sigma} H$, impossible unless H is a deformation of a Hopf algebra

• However...

- For Hopf algebra H, A = H is cleft H-comodule algebra extension of k, in particular Galois
- For coquasi-Hopf algebras, does not work
- If yes, it would mean that $A = \Bbbk \#_{\sigma} H$, impossible unless H is a deformation of a Hopf algebra
- However...
- \exists similarity between the formulas of the antipode and the cleft extension relations $\implies A = H$ cleft over \Bbbk , in particular Galois, in an appropriate context

- *H*(2) is the unique non-trivial coquasi-Hopf algebra of dimension 2 over a field k, *char*k ≠ 2, s. t.
 - It has the Hopf algebra structure of $\Bbbk[\mathbb{Z}_2]$, $\mathbb{Z}_2 = \{1, x\}$
 - The cocycle $\omega(x,x,x) = -1$
 - The elements $\alpha,\,\beta\in H(2)^*$ given by $\alpha(1)=1,\,\alpha(x)=-1$ and β trivial

Proposition

Let R associative algebra. Then $\exists (R, \circ, \sigma) \text{ crossed } H(2)\text{-system} \iff \exists \mathcal{F} \in Aut_{\Bbbk-alg}(R), c \in U(R) \text{ such that}$ $\mathcal{F}^2(e) = cec^{-1}$ $\mathcal{F}(c) = -c$

Denote $\left(\frac{\mathcal{F}, c}{R}\right)$ the data associated to the crossed product.

Proposition

$$\begin{pmatrix} \mathcal{F}, c \\ R \end{pmatrix} \simeq \begin{pmatrix} \mathcal{F}', c' \\ R \end{pmatrix} \text{ as right } H(2)\text{-comodule algebras and left} R-modules \iff \exists s \in U(R) \text{ s.t.} c' = s^{-1}\mathcal{F}(s)^{-1}c \qquad \mathcal{F}'(e) = s^{-1}\mathcal{F}(e)s$$

Adriana Balan (University Politehnica of Buc/Crossed products and cleft extensions for coq

- *R* commutative. Then all crossed systems are completely described by $\mathcal{F} \in Aut_{\Bbbk-a\lg}(R)$ and $c \in U(R)$ such that $\mathcal{F}^2 = I_R$ and $\mathcal{F}(c) = -c$
- *R* central simple \Bbbk -algebra. There are no H(2)-crossed products of *R*.

- H(3) not trivial coquasi-Hopf algebra of dimension 3, basis $\{1, x, x^2\}$, built on $\mathbb{k}[\mathbb{Z}_3]$ with
 - Cocycle ω (Albuquerque, Majid, 1999)

$$\begin{split} \omega(x, x, x) &= \omega(x, x, x^2) = 1 \\ \omega(x, x^2, x) &= \omega(x^2, x, x) = \omega(x^2, x^2, x) = q^{-1} \\ \omega(x, x^2, x^2) &= \omega(x^2, x, x^2) = \omega(x^2, x^2, x^2) = q \end{split}$$

for $q \neq 1$ cubic root of 1

• Elements $\alpha, \beta \in H(3)^*$, α trivial and β given by $\beta(1) = 1, \beta(x) = q, \beta(x^2) = q^{-1}$

Proposition

Let R associative algebra. Then $\exists (R, \circ, \sigma) \text{ crossed } H(3)\text{-system} \iff \exists \mathcal{F}, \mathcal{G} \in Alg_{\Bbbk}(R) \text{ and } u^{(1)}, u^{(2)}, v^{(1)}, v^{(2)} \in U(R) \text{ s. t.}$

		0		${\cal F}$		${\cal G}$]
		\mathcal{F}	$u^{(1)}$	$G(-)u^{(1)-1}$	$v^{(1)}(\cdot$	$-)v^{(1)-1}$	
	9	\mathcal{G}	<i>v</i> ⁽²⁾	$(-)v^{(2)-1}$	$u^{(2)}\mathcal{F}($	$(-)u^{(2)-1}$]
	<i>u</i> ⁽¹⁾		u ⁽²⁾		$v^{(1)}$	v ⁽²⁾	
\mathcal{F}	$u^{(1)}v^{(2)}v^{(1)-1}$		$v^{(1)}u^{(1)-1}q^{-1}$		$u^{(1)}u^{(2)}$	$v^{(1)}q$	
\mathcal{G}	$v^{(2)}u^{(2)-1}q$			$u^{(2)}v^{(1)}v^{(2)-1}q^{-1}$		$v^{(2)}q^{-1}$	$u^{(2)}u^{(1)}q$

• R commutative implies $\mathcal{F}^3 = I_R$ and $\mathcal{F}^2 = \mathcal{G}$.

Proposition

$$\left(\frac{\mathcal{F}, \mathcal{G}, u^{(1)}, u^{(2)}, v^{(1)}, v^{(2)}}{R}\right) \simeq \left(\frac{\mathcal{F}', \mathcal{G}', u^{\prime(1)}, u^{\prime(2)}, v^{\prime(1)}, v^{\prime(2)}}{R}\right) \text{ as}$$

H(3)-comodule algebras and left R-modules $\iff \exists s^{(1)}, s^{(2)} \in U(R)$ s.t.

$$\begin{array}{lll} \mathcal{F}'(e) &=& s^{(1)-1}\mathcal{F}(e)s^{(1)} & \mathcal{G}'(e) = s^{(2)-1}\mathcal{G}(e)s^{(2)} \\ u^{\prime(1)} &=& s^{(1)-1}\mathcal{F}(s^{(1)-1})u^{(1)}s^{(2)} & v^{\prime(1)} = s^{(1)-1}\mathcal{F}(s^{(2)-1})v^{(1)} \\ u^{\prime(2)} &=& s^{(2)-1}\mathcal{G}(s^{(2)-1})u^{(2)}s^{(1)} & v^{\prime(2)} = s^{(2)-1}\mathcal{G}(s^{(2)-1})v^{(2)} \end{array}$$