Galois extensions for coquasi-Hopf algebras

Adriana Balan

University Politehnica of Bucharest

July 8, 2008

Adriana Balan (University Politehnica of Buc| Galois extensions for coquasi-Hopf algebras

July 8, 2008 1 / 20

- Oquasi-Hopf algebras and their coactions
- ② Galois extensions and structure theorems for relative Hopf modules
 - Cleft extensions
- Galois extensions and a Hopf algebroid construction

- (Majid (1992), Panaite, \$tefan(1997)) H coquasi-Hopf algebra
 - coassociative coalgebra Δ , ϵ
 - \exists unit and multiplication, no longer associative
 - associativity of multiplication controlled by $\omega \in (H \otimes H \otimes H)^*$
 - \exists antimorphism of coalgebras (antipode) *S*, elements α , $\beta \in H^*$

- (Majid (1992), Panaite, Ștefan(1997)) H coquasi-Hopf algebra
 - coassociative coalgebra $\Delta,\,\epsilon$
 - \exists unit and multiplication, no longer associative
 - associativity of multiplication controlled by $\omega \in (H \otimes H \otimes H)^*$
 - \exists antimorphism of coalgebras (antipode) *S*, elements α , $\beta \in H^*$
- Monoidal category (but not strict!) of comodules (\mathcal{M}^H, \otimes)

H coquasi-Hopf algebra.

- A right *H*-comodule algebra *A* is an algebra in the monoidal category \mathcal{M}^{H} .
- A is no longer associative!
- The space of coinvariants B = A^{coH} = {a ∈ A | ρ_A(a) = a ⊗ 1_H} is an algebra (associative!)

- (Bulacu, Nauwelaerts, 2000) Right relative (*H*, *A*)-**Hopf module** is a right *A*-module in \mathcal{M}^{H} .
- The category of relatives Hopf modules \mathcal{M}_A^H
- Adjunction of categories: $\mathcal{M}_B \stackrel{(-)\otimes_B A}{\underset{(-)^{coH}}{\rightleftharpoons}} \mathcal{M}_A^H$ with counit ε_M

- Twist invariance: take τ twist on H. Then H_{τ} is a coquasi-Hopf algebra, with new multiplication $g \cdot_{\tau} h = \tau(g_1, h_1)g_2h_2\tau^{-1}(g_3, h_3)$, same unit, new cocycle
- $A_{\tau^{-1}}$ is a comodule algebra over H_{τ} , but with new operation $g \circ_{\tau} h = g_1 h_1 \tau^{-1}(g_2, h_2)$
- Category isomorphism $\mathcal{M}^{H}_{A}\simeq \mathcal{M}^{H_{\tau}}_{A_{\tau^{-1}}}$

 Easy way to produce comodule algebras: Start with H Hopf algebra. Then A = H is a comodule algebra over itself. Take now τ twist on H. Then A_{τ⁻¹} is comodule algebra over coquasi-Hopf algebra H_τ

- Easy way to produce comodule algebras: Start with H Hopf algebra. Then A = H is a comodule algebra over itself. Take now τ twist on H. Then A_{τ⁻¹} is comodule algebra over coquasi-Hopf algebra H_τ
- Apply to the Hopf algebra H = kG, for G finite group, and twist induced by a 2-cocycle σ : G × G → k^{*}

- Easy way to produce comodule algebras: Start with H Hopf algebra. Then A = H is a comodule algebra over itself. Take now τ twist on H. Then A_{τ-1} is comodule algebra over coquasi-Hopf algebra H_τ
- Apply to the Hopf algebra $H = \Bbbk G$, for G finite group, and twist induced by a 2-cocycle $\sigma : G \times G \longrightarrow \mathbf{k}^*$
- For G = (Z₂)ⁿ: all Cayley and Clifford algebras as comodule algebras over some coquasi-Hopf algebra (Albuquerque, Majid1998-2000)

H coquasi-Hopf algebra, A right comodule algebra, $B = A^{coH}$

Example (Masuoka, 2003)

From operator algebras theory Matched pair of finite groups $F, G \Longrightarrow$ construction of a coquasi-Hopf algebra $H = \widehat{G} \#_{\sigma,\tau} CF$ as a bicrossproduct with some cocycle data (ω, σ, τ) Outer action of the mathed pair on the hyperfinite II_1 factor $\mathcal{R} \Longrightarrow$ Galois extension $\mathcal{R}(\alpha, \nu_0) \subseteq \mathcal{R}^{(\beta, G)}$ using classical definition $a \otimes_B b \longrightarrow ab_0 \otimes b_1$

In this case our formula $a \otimes_B b \longrightarrow a_0 b_0 \otimes \omega^{-1}(a_1, b_1\beta(b_2), S(b_3))b_4$ reduces to $a \otimes_B b \longrightarrow ab_0 \otimes b_1$

 G group, ω invertible normalized 3-cocycle Coquasi-Hopf algebra H = (kG, ω)
 A comodule algebra ⇔ quasialgebra G-graded (Albuquerque, Majid, 1998-2000)
 A_e ⊂ A is Galois ⇔ A is strongly graded

- G group, ω invertible normalized 3-cocycle Coquasi-Hopf algebra H = (kG, ω)
 A comodule algebra ⇔ quasialgebra G-graded (Albuquerque, Majid, 1998-2000)
 A_e ⊆ A is Galois ⇔ A is strongly graded
- Twist invariance: for τ twist on H, it follows that $B \subseteq A$ is H-Galois $\iff B \subseteq A_{\tau^{-1}}$ is H_{τ} -Galois

For Hopf algebras: $can = \varepsilon_{A \otimes H}$, where $A_{\bullet} \otimes H_{\bullet}^{\bullet} \in \mathcal{M}_{A}^{H}$

Lemma

S bijective \implies isomorphism of right H-comodules $H^{\bullet} \otimes A^{\bullet} \longrightarrow A \otimes H^{\bullet}$

Proposition

 $A \otimes H$ becomes a right A-module in \mathcal{M}^H Counit $\varepsilon_{A \otimes H} = \operatorname{can}_f$, where $f = \operatorname{twist}$ induced by S^{-1} ε bijective \Longrightarrow Galois extension $B \subseteq A$

Definition

A right H-comodule algebra is cleft if $\exists \gamma, \delta : H \longrightarrow A$ such that

$$\begin{split} \rho(\gamma(h)) &= \gamma(h_1) \otimes h_1 \qquad \rho(\delta(h)) = \delta(h_2) \otimes S(h_1) \\ \delta(h_1)\gamma(h_2) &= \alpha(h)\mathbf{1}_A \qquad \gamma(h_1)\beta(h_2)\delta(h_3) = \varepsilon(h)\mathbf{1}_A \end{split}$$

Proposition

There is a Morita context $\mathbb{M}(A)$ with

- rings $Hom^H(\overline{H}, A)$ and Hom(H, B)
- bimodules $Hom^{H}(H, A)$ and $Hom^{H}(H^{S}, A)$
- connecting morphisms

$$(-,-) : Hom^{H}(H, A) \otimes_{Hom^{H}(\overline{H}, A)} Hom^{H}(H^{S}, A) \longrightarrow Hom(H, B)$$

$$(\mathfrak{p}, \mathfrak{q})(h) = \mathfrak{p}(h_{1})\beta(h_{2})\mathfrak{q}(h_{3})$$

$$[-,-] : Hom^{H}(H^{S}, A) \otimes_{Hom(H,B)} Hom^{H}(H, A) \longrightarrow Hom^{H}(\overline{H}, A)$$

$$[\mathfrak{q}, \mathfrak{p}](h) = \mathfrak{q}(h_{1})\mathfrak{p}(h_{2})$$

Theorem

H coquasi-Hopf algebra, A right H-comodule algebra \Longrightarrow

First Morita map [,] is surjective ⇔ { B ⊆ A is Galois ∃ n > 0, s. t. A is direct summand in (•B ⊗ H•)ⁿ
Strict Morita context ⇔ { • B ⊆ A is Galois • ∃ n > 0, s. t. A is direct summand in (•B ⊗ H•)ⁿ • ∃ n, r > 0 s. t. A is direct summand in (•B ⊗ H•)ⁿ and • B ⊗ H• is direct summand in A^r
B ⊂ A cleft extension ⇒ strict Morita context.

Theorem

H coquasi-Hopf algebra with bijective antipode, A comodule algebra, $B = A^{coH}$. TFAE:

- $B \subseteq A$ cleft
- **②** $ε_M$ bijective for all *M* ∈ M_A^H and *B* ⊆ *A* has the normal basis property
- **§** $B \subseteq A$ Galois and $B \subseteq A$ has the normal basis property.

Then $\mathcal{M}_B \simeq \mathcal{M}_A^H$

Theorem

- H coquasi-Hopf algebra with bijective antipode, A comodule algebra and $B = A^{coH}$. TFAE:
 - I a total integral γ : H → A (comodule map with γ(1_H) = 1_A) and can : A ⊗_B A → A ⊗ H is surjective
 - ⁽²⁾ The coinvariants functor $(-)^{coH}$ and the induction functor $-\otimes_B A$ form an equivalence of categories $\mathcal{M}_A^H \simeq \mathcal{M}_B$
 - ◎ (Left version) The coinvariants functor $(-)^{coH}$ and the induction functor $A \otimes_B -$ form an equivalence of categories ${}_A \mathcal{M}^H \simeq {}_B \mathcal{M}$
 - **(**) A is left B-module faithfully flat and $B \subseteq A$ is Galois
 - A is right B-module faithfully flat and $B \subseteq A$ is Galois

- *H* coquasi-Hopf algebra, *A* right *H*-comodule algebra
- $A^{\bullet} \otimes A^{\bullet}$ is a right comodule by the codiagonal coaction $\rho(a \otimes b) = a_0 \otimes b_0 \otimes a_1 b_1$
- The space of coinvariants $L = (A \otimes A)^{coH}$ is an associative B^{op} -algebra with unit $1_A \otimes 1_A$ and multiplication

$$(\mathsf{a}\otimes\mathsf{b})(\mathsf{c}\otimes\mathsf{d})=\mathsf{a}_0\mathsf{c}_0\otimes\mathsf{d}_0\mathsf{b}_0\omega^{-1}(\mathsf{a}_1,\mathsf{c}_1,\mathsf{d}_1\mathsf{b}_1)\omega(\mathsf{c}_2,\mathsf{d}_2,\mathsf{b}_2)$$

- *H* coquasi-Hopf algebra with bijective antipode, *A* comodule algebra which is Galois left faithfully flat *B*-module Category equivalence $\mathcal{M}_A^{\mathcal{H}} \simeq \mathcal{M}_B$
- $\mathcal{M}_{\mathcal{A}}^{\mathcal{H}}$ has a natural left $\mathcal{M}^{\mathcal{H}}$ -action: $\Diamond : \mathcal{M}^{\mathcal{H}} \times \mathcal{M}_{\mathcal{A}}^{\mathcal{H}} \longrightarrow \mathcal{M}_{\mathcal{A}}^{\mathcal{H}}$, $V \Diamond M = V \otimes M$, with structures $\rho(v \otimes m) = v_0 \otimes m_0 \otimes v_1 m_1$ and $(v \otimes m)a = v \otimes ma$
- \bullet It follows that $\mathcal{M}_{\mathcal{B}}$ is a left $\mathcal{M}^{\mathcal{H}}\text{-category, with structure:}$

$$\Diamond: \mathcal{M}^{\mathcal{H}} \times \mathcal{M}_B \longrightarrow \mathcal{M}_B \qquad V \Diamond N = [V \otimes (N \otimes_B A_{\bullet})]^{co\mathcal{H}}$$

and coassociator $V\Diamond(W\Diamond N)$) $\stackrel{\Psi_{V,W,M}^{-1}}{\longrightarrow} (V\otimes W)\Diamond N$, $\Psi_{V,W,M}^{-1}(v\otimes \{[w\otimes (n\otimes_B a)]\otimes_B b\}) = (v\otimes w)\otimes (n\otimes_B ab)$

- A algebra in $\mathcal{M}^{\mathcal{H}} \Longrightarrow$ left A-modules within $\mathcal{M}^{\mathcal{H}}_{A}$ and \mathcal{M}_{B}
- \bullet Obtain equivalent categories ${}_{A}\mathcal{M}^{\mathcal{H}}_{A}$ and ${}_{A}(\mathcal{M}_{B})$
- Recover our algebra $L = A \Diamond B^{op}$ and have category isomorphism $_{\mathcal{A}}(\mathcal{M}_B) \simeq _{A \Diamond B^{op}} \mathcal{M}$ (Hopf algebra case: Schauenburg, 2003)

Proposition

 $_{L}\mathcal{M}$ is a monoidal category and L becomes a B^{op} -Hopf algebroid.

• H coquasi-Hopf algebra, A Galois faithfully flat \Bbbk -module

- H coquasi-Hopf algebra, A Galois faithfully flat \Bbbk -module
- Then A is a commutative algebra in the category of Yetter-Drinfeld modules

- H coquasi-Hopf algebra, A Galois faithfully flat k-module
- Then A is a commutative algebra in the category of Yetter-Drinfeld modules
- Some smash product of A with H should be a Hopf algebroid (for Hopf algebras Militaru, Brzèzinski, 2001)