An institutional approach to positive coalgebraic logic

Adriana Balan¹ Alexander Kurz² Jiří Velebil³

¹University Politehnica of Bucharest, Romania

²University of Leicester, UK

³Czech Technical University in Prague, Czech Republic

22nd International Workshop on Algebraic Development Techniques September 2014 – Sinaia, Romania

Background

Modal logic is about Kripke frames

$$(X, X \stackrel{\mathsf{r}}{\nrightarrow} X)$$

These are coalgebras for the **powerset** functor

 $X \to \mathcal{P}X, \ x \mapsto \{x' \in X \mid \mathbf{r}(x', x)\}$

More generally, replace P by any functor $T : \mathsf{Set} \to \mathsf{Set}$

T-coalgebras capture LTS, (non)deterministic automata, Mealy machines, probabilistic/stochastic transition systems, ...

Reasoning about T-coalgebras: coalgebraic (modal) logic (L, δ)

Logic $L : BA \rightarrow BA$ functor Semantics $\delta : LP \rightarrow PT^{op}$ natural transformation

A. Balan, A. Kurz, J. Velebil An institutional approach to positive coalgebraic logic

Outline

Institution **Ins** of Set-based coalgebraic logic [Kurz-Hennicker02, Pattinson03, Cîrstea06, ...]

Ins restricts to an institution $\ensuremath{\mathsf{Ins}_{\mathsf{wpb}}}$ having

- signatures: Set-functors which preserve weak pullbacks
- morphisms between signatures: weakly cartesian natural transformations

Logic Axiomatization of the positive fragment of modal logic [Dunn95]

Dunn's result naturally **generalize** from modal logic to coalgebraic logic [B-Kurz-Velebil13]

Coalgebra Looking at simulations instead of bisimulations? Posets provide the environment for that

Category Theory Posets link universal coalgebra and domain theory

Technical issue: to ensure the monotonicity of modal operators, need to work in an ordered setting (Poset-enriched category theory)

ABC of Poset-enriched category theory

Poset-category: hom-sets are ordered and composition preserves this order

Poset-functor (locally monotone): functor preserving the order on the hom-(po)sets

Poset-natural transformation: natural transformation

What a Poset-enriched institution might be?

- $\mathsf{Ins} = (\mathsf{Sign}, \mathsf{Mod}, \mathsf{Sen}, \vDash)$
 - Sign Poset-category
 - ► Mod : Sign^{op} → Poset-Cat locally monotone functor
 - ► Sen : Sign \rightarrow Poset locally monotone functor

▶ For each signature T, a relation $|Mod(T)| \stackrel{\vDash}{\nrightarrow} Sen(T)$ such that

$$M \vDash \mathsf{Sen}(\sigma)(\varphi) \iff \mathsf{Mod}(\sigma)(M) \vDash \varphi$$

(for each $\sigma: \mathcal{T}
ightarrow \hat{\mathcal{T}}$, $M \in \mathsf{Mod}(\hat{\mathcal{T}})$, $\varphi \in \mathsf{Sen}(\mathcal{T})$)

A. Balan, A. Kurz, J. Velebil

What a Poset-enriched institution might be?

- $\mathsf{Ins} = (\mathsf{Sign}, \mathsf{Mod}, \mathsf{Sen}, \vDash)$
 - ► Sign category
 - ► Mod : Sign^{op} → Poset-Cat → Cat functor
 - Sen : Sign \rightarrow Poset \rightarrow Set functor

▶ For each signature T, a relation $|Mod(T)| \stackrel{\vDash}{\nrightarrow} Sen(T)$ such that

$$M \vDash \mathsf{Sen}(\sigma)(\varphi) \iff \mathsf{Mod}(\sigma)(M) \vDash \varphi$$

(for each $\sigma: T \to \hat{T}$, $M \in Mod(\hat{T})$, $\varphi \in Sen(T)$)

A. Balan, A. Kurz, J. Velebil

Outline

Institution **Ins** of Set-based coalgebraic logic [Kurz-Hennicker02, Pattinson03, Cîrstea06, ...]

Ins restricts to an institution $\ensuremath{\mathsf{Ins}_{\mathsf{wpb}}}$ having

- signatures: Set-functors which preserve weak pullbacks
- morphisms between signatures: weakly cartesian natural transformations

Outline

Institution **Ins** of Set-based coalgebraic logic [Kurz-Hennicker02, Pattinson03, Cîrstea06, ...]

Ins restricts to an institution $\ensuremath{\mathsf{Ins}_{\mathsf{wpb}}}$ having

- signatures: Set-functors which preserve weak pullbacks
- morphisms between signatures: weakly cartesian natural transformations

Institution $\mathbf{Ins'}$ of Poset-based coalgebraic logic, using the contravariant adjunction Poset – DLat

Ins' restricts to an institution Ins_{ex-sq} having

- signatures: locally monotone functors which preserve exact squares
- morphisms between signatures: weakly exact natural transformations

Exact square

Main result

Theorem

There is a (liberal) morphism of institutions between:

- The institution of Set-functors which preserve weak pullbacks and their strongly finitary coalgebraic logic Ins_{wpb}
- The institution of Poset-functors which preserve exact squares and their strongly finitary coalgebraic logic lns'_{ex-sq}

sending a signature to its posetification, and assigning to each logic its positive fragment.

Two institutions of (positive) coalgebraic logic Signatures

Category of signatures

 $\mathsf{Sign} = [\mathsf{Set},\mathsf{Set}]^\mathsf{op}$

- Signature: functor
- $T: \mathsf{Set} \to \mathsf{Set}$
- Morphism $T \rightarrow \hat{T}$ of signatures: natural transformation $\sigma : \hat{T} \rightarrow T$

(notice the change of direction!)

Poset-category of signatures

 $\mathsf{Sign}' = [\mathsf{Poset},\mathsf{Poset}]^\mathsf{op}$

- Signature: locally monotone functor T': Poset \rightarrow Poset - Morphism $T' \rightarrow \hat{T}'$ of signatures: monotone natural transformation $\sigma : \hat{T}' \rightarrow T'$

A. Balan, A. Kurz, J. Velebil

Two institutions of (positive) coalgebraic logic Signatures

Discrete Poset-category

Category of signatures $Sign = [Set, Set]^{op}$

- Signature: functor T : Set \rightarrow Set
- Morphism $T \rightarrow \hat{T}$ of signatures: natural transformation $\sigma : \hat{T} \rightarrow T$

(notice the change of direction!)

Poset-category of signatures

 $\mathsf{Sign}' = [\mathsf{Poset},\mathsf{Poset}]^\mathsf{op}$

- Signature: locally monotone functor T': Poset \rightarrow Poset - Morphism $T' \rightarrow \hat{T}'$ of signatures: monotone natural transformation $\sigma : \hat{T}' \rightarrow T'$

Two institutions of (positive) coalgebraic logic A functor between signatures

$$\mathsf{Sign} = [\mathsf{Set},\mathsf{Set}]^\mathsf{op} \longrightarrow \mathsf{Sign}' = [\mathsf{Poset},\mathsf{Poset}]^\mathsf{op}$$

A. Balan, A. Kurz, J. Velebil

Two institutions of (positive) coalgebraic logic

A functor between signatures

Discrete Poset-functor

$$\mathsf{Sign} = [\mathsf{Set}, \mathsf{Set}]^{\mathsf{op}} \xrightarrow{\Phi} \mathsf{Sign}' = [\mathsf{Poset}, \mathsf{Poset}]^{\mathsf{op}}$$

1 For
$$T$$
 : Set \rightarrow Set, define

$$\Phi(T) := \operatorname{Lan}_D(DT) : \operatorname{Poset} \rightarrow \operatorname{Poset} \quad \bullet \operatorname{Posetification}$$

2 For $\sigma : \hat{T} \to T$, $\Phi(\sigma)$ is the unique monotone natural transformation such that

A. Balan, A. Kurz, J. Velebil

Two institutions of (positive) coalgebraic logic Models

Reduct functor

Reduct Poset-functor

 $\mathsf{Mod}:[\mathsf{Set},\mathsf{Set}]\to\mathsf{Cat}$

 $\mathsf{Mod}':[\mathsf{Set},\mathsf{Set}]\to\mathsf{Poset}-\mathsf{Cat}$

Set-examples

Models: coalgebras

$$T \longmapsto \operatorname{Coalg}(T)$$

2 Morphisms between models: coalgebra morphisms

$$\begin{array}{ccc} \hat{T} \longmapsto \mathsf{Mod}(\hat{T}) = \mathsf{Coalg}(\hat{T}) & X \xrightarrow{\hat{c}} \hat{T}X \\ \sigma & & & & \downarrow \\ \sigma & & & & \downarrow \\ T \longmapsto \mathsf{Mod}(\sigma) & & & & \downarrow \\ T \longmapsto \mathsf{Mod}(T) = \mathsf{Coalg}(T) & X \xrightarrow{\hat{c}} \hat{T}X \xrightarrow{\sigma} TX \end{array}$$

A. Balan, A. Kurz, J. Velebil

Two institutions of (positive) coalgebraic logic

Discrete Poset-functor

Madala

Reduct functor Mod : [Set, Set] \rightarrow Cat **Reduct** Poset-functor $Mod' : [Set, Set] \rightarrow Poset - Cat$

Models: coalgebras

$$T \longmapsto \mathsf{Coalg}(T)$$

On Morphisms between models: coalgebra morphisms

$$\begin{array}{ccc} \hat{T} \longmapsto \mathsf{Mod}(\hat{T}) = \mathsf{Coalg}(\hat{T}) & X \xrightarrow{\hat{c}} \hat{T}X \\ \downarrow & & & \downarrow \\ \sigma \downarrow & & & \downarrow \\ T \longmapsto \mathsf{Mod}(\sigma) & & & \downarrow \\ T \longmapsto \mathsf{Mod}(T) = \mathsf{Coalg}(T) & X \xrightarrow{\hat{c}} \hat{T}X \xrightarrow{\sigma} TX \end{array}$$

A. Balan, A. Kurz, J. Velebil

An institutional approach to positive coalgebraic logic

WADT2014

Two institutions of (positive) coalgebraic logic

A transformation of models

There is a monotone-natural transformation

 $\beta : \mathsf{Mod} \longrightarrow \mathsf{Mod}' \circ \Phi$

whose components β_T : Coalg(T) \rightarrow Coalg($\Phi(T)$) are

$$X \xrightarrow{c} TX \longmapsto DX \xrightarrow{Dc} DTX \cong \Phi(T)DX$$

Notice that each component β_T has a left adjoint!

A. Balan, A. Kurz, J. Velebil

The institution of Set-coalgebraic logic

Sentences

Context: standard contravariant adjunction of propositional logic

- P maps a set to the BA of its subsets
- S maps a BA to the set of its ultrafilters

The institution of Set-coalgebraic logic Sentences

Context: standard contravariant adjunction of propositional logic

$$T^{op} \bigoplus \operatorname{Set}^{op} \xleftarrow{S}_{P} \operatorname{BA} \bigoplus L$$

Signature T : Set \rightarrow Set T-models: T-coalgebras

Coalgebraic logic, abstractly

Syntax: functor $L : BA \rightarrow BA$

Semantics: natural transformation $\delta: LP \rightarrow PT^{op}$

- $\operatorname{Alg}(L)$ is a variety
- L has a presentation by operations and equations

- P maps a set to the BA of its subsets
- S maps a BA to the set of its ultrafilters

- L preserves sifted colimits
- L is determined by its restriction to the f. g. free BAs

The institution of Set-coalgebraic logic Sentences

- Recall: predicate liftings of arity *n* are natural transformations

$$\mathsf{Set}(-,2^n) \to \mathsf{Set}(\mathcal{T}-,2)$$

- Equivalently, elements of $Set(T(2^n), 2) \cong UPT^{op}SFn$

(here $F \dashv U : BA \rightarrow Set$ is the monadic adjunction between the free BA functor and the forgetful one)

- Define $LFn ::= PT^{op}SFn$ on free finitely generated BA and extend continuously to all BA ($L = Lan_J(PT^{op}SJ)$, with $J : BA_f \to BA$ the inclusion functor)
- The semantics $\delta:LP\to PT$ is the transpose of the canonical morphism $L\to PT^{\rm op}S$

The institution of Set-coalgebraic logic Sentences

- The natural transformation δ provides one-step semantics
- To pass to the global semantics, have to iterate the one-step logic constructor L and form the initial L-algebra LI \xrightarrow{in} I

The functor Sen : Sign = $[Set, Set]^{op} \rightarrow Set$

The set of *T*-sentences

$$T \longmapsto \operatorname{Sen}(T) = UI$$

2 Translation of sentences

A. Balan, A. Kurz, J. Velebil

The institution of Set-coalgebraic logic Satisfaction relation

- $T \text{-model (coalgebra)} \qquad X \stackrel{c}{\longrightarrow} TX$
- *L*-algebra of subsets $LPX \xrightarrow{\delta} PT^{op}X \xrightarrow{Pc} PX$
- Unique *L*-algebra morphism $I \xrightarrow{\llbracket \rrbracket_{(X,c)}} PX$, $\varphi \mapsto \llbracket \varphi \rrbracket_{(X,c)}$
- Satisfaction relation

$$x \vDash_{(X,c)} \varphi \iff x \in \llbracket \varphi \rrbracket_{(X,c)} \qquad (X,c) \vDash \varphi \iff x \vDash_{(X,c)} \varphi, \ \forall x \in X$$

Theorem

The construction $Ins = (Sign, Mod, Sen, \vDash)$ is an institution.

A. Balan, A. Kurz, J. Velebil

$$\mathcal{T}^{\operatorname{op}} \bigoplus \operatorname{Set}^{\operatorname{op}} \underbrace{\overset{\mathsf{S}}{\underbrace{\bot}}}_{P} \operatorname{BA} \bigoplus L$$

Coalgebraic logic

Syntax:functor $L : BA \rightarrow BA$ Semantics:natural transformation $\delta : L P \rightarrow P T^{op}$ Alg(L) is avarietyL preservesL has a presentation by
operations and
equationsL is determined by its restriction
to free f. g. BAs

A. Balan, A. Kurz, J. Velebil

$$T'^{\text{op}} \bigcirc \operatorname{Poset}^{\operatorname{op}} \xleftarrow{S'}_{P'} \operatorname{DLat} \bigotimes L'$$

- P' maps a poset to the DLat of its upsets.
- S' associates to any DLat the poset of prime filters.

Poset-Coalgebraic logic

Syntax: locally monotone functor L' : DLat \rightarrow DLat

Semantics: monotone natural transformation $\delta' : L'P' \rightarrow P'T'^{op}$

- Alg(L) is an ordered variety
- L has a presentation by monotone operations and equations

- L preserves Poset-sifted colimits
- L is determined by its restriction to free f. g. DLs on discrete posets

A. Balan, A. Kurz, J. Velebil

- Predicate liftings of arity p are monotone natural transformations

 $\mathsf{Poset}(-, [p, 2]) \to \mathsf{Poset}(T'-, 2), \quad (p \text{ finite poset})$

- That is, elements of the poset Poset(T'([p, 2]), 2) $\cong U'P'T'^{op}S'F'p$ (here [X, Y] is the poset of monotone maps $X \to Y$, and $F' \dashv U'$: DLat \to Poset is the Poset-monadic adjunction between the free DL functor and the forgetful one)

- Define $L'F'Dn ::= P'T'^{op}S'F'Dn$ on free finitely generated DL on discrete generators and extend continuously to all DL

– The semantics $\delta: L'P' \to P'T'$ is the transpose of the canonical morphism $L' \to P'T'^{op}S'$

– Logic (L', δ') is expressive [Kapulkin-Kurz-Velebil12], for finitary T' which preserves embeddings

A. Balan, A. Kurz, J. Velebil

- Predicate liftings of arity p are monotone natural transformations

$$\mathsf{Poset}(-, [p, 2]) \to \mathsf{Poset}(T'-, 2), \quad (p \text{ finite poset})$$

- That is, elements of the poset Poset(T'([p, 2]), 2) $\cong U'P'T'^{op}S'F'p$ (here [X, Y] is the p Only discrete arities! nd $F' \dashv U'$: DLat \rightarrow Poset is the Poset-monadic adjunction between the free DL functor and the forgettul pne)

- Define $L'F'Dn ::= P'T'^{op}S'F'Dn$ on free finitely generated DL on discrete generators and extend continuously to all DL

– The semantics $\delta: L'P' \to P'T'$ is the transpose of the canonical morphism $L' \to P'T'^{op}S'$

– Logic (L', δ') is expressive [Kapulkin-Kurz-Velebil12], for finitary T' which preserves embeddings

A. Balan, A. Kurz, J. Velebil

The institution of Poset-coalgebraic logic Sentences and satisfaction relation

– Sen' : Sign' \rightarrow Poset locally monotone functor

T': Poset \rightarrow Poset \mapsto Sen(T') := U'I' poset of sentences

(where $L'I' \longrightarrow I'$ is the initial L'-algebra)

- T'-coalgebra $X \xrightarrow{c} T'X \implies [-]_{(X,c)} : I' \rightarrow P'X$ (a formula is sent to the upperset of states satisfying it)

- Satisfaction relation

A. Balan, A. Kurz, J. Velebil

The institution of Poset-based coalgebraic logic

Theorem

The construction $Ins' = (Sign', Mod', Sen', \vDash)$ is an institution, where:

- $1 Sign' = [Poset, Poset]^{op}$
- $3 Sen': Sign' \longrightarrow Poset \longrightarrow Set, Sen'(T) = U'I'$
- **③** The satisfaction relation $\models \subseteq |Mod'(T')| \times Sen(T')$ is defined as earlier

The positive fragment of coalgebraic logic

Theorem (B-Kurz-Velebil13)

Let T : Set \rightarrow Set such that:

- ► T preserves weak pullbacks
- $T' = \text{Lan}_D(DT)$ is the posetification of T
- (L, δ) and (L', δ') are the (strongly finitary) logics of T and T'

Then L' is the positive fragment of L. More precisely, there is an isomorphism

$$\begin{array}{ccc} \mathsf{DLat} & \xrightarrow{L'} & \mathsf{DLat} \\ w & \downarrow & \cong & \downarrow w \\ \mathsf{BA} & \xrightarrow{L} & \mathsf{BA} \end{array}$$

compatible with semantics $\delta : LP \to PT^{op}$ and $\delta' : L'P' \to P'T'^{op}$

A. Balan, A. Kurz, J. Velebil

Two institutions of (positive) coalgebraic logic Relating the sentences

Apply the isomorphism above to construct a monotone natural transformation between sentences

$$\alpha:\mathsf{Sen}'\circ\Phi\to\mathsf{Sen}$$

restricted to signature functors T which preserve weak pullbacks and weakly cartesian natural transformations

A. Balan, A. Kurz, J. Velebil

Main result

Theorem

There is a (liberal) morphism of institutions between:

- The institution of Set-functors which preserve weak pullbacks and their strongly finitary coalgebraic logic Ins_{wpb}
- The institution of Poset-functors which preserve exact squares and their strongly finitary coalgebraic logic Ins'_{ex-sq}

sending a signature to its posetification, and assigning to each logic its positive fragment.

Some references

B-Kurz11 Finitary functors: from Set to Preord and Poset, CALCO2011 B-Kurz-Velebil13 Positive fragments of coalgebraic logics, CALCO2013, arXiv:1402.5922 (2014) Cirstea06 An institution of modal logics for coalgebras, J. Logic Alg. Progr. 67(2006) Dunn95 Positive Modal Logic, Studia Logica 55(1995) Kapulkin-Kurz-Velebil12 Expressiveness of Positive Coalgebraic Logic, Adv. Modal Logic 9(2012) Kurz-Hennicker02 On institutions for modular coalgebraic specifications, TCS 280(2002) Kurz-Pattinson00 Coalgebras and Modal Logic for Parameterised Endofunctors. CWI Tech. Rep. (2000) Pattinson03 Translating logics for coalgebras, WADT2002

Thank you!

Thank you!

Thank you!

Examples

() $T = \mathcal{P}$ (finite) powerset functor

Logic *LA* is the BA generated by $\Box a$, for $a \in A$, wrt \Box preserving finite meets Semantics $\delta_X : LPX \to P\mathcal{P}^{op}X$, $\Box a \mapsto \{b \in \mathcal{P}X \mid b \subseteq a\}$

2 $T = \mathcal{N}$ the neighbourhood functor.

Logic *LA* is the BA generated by $\Box a$, for $a \in A$, no equations Semantics $\delta_X : LPX \to P\mathcal{N}^{op}X$, $\Box a \mapsto \{s \in \mathcal{N}X \mid a \in s\}$

A. Balan, A. Kurz, J. Velebil
More examples...

 T = M the (finite) multisets functor
 Logic LA is the BA generated by ◊_na, for a ∈ A, wrt ◊_n preserving finite joins

 Semantics δ_X : LPX → PM^{op}X, ◊_na ↦ {φ ∈ MX | card φ(x) ≥ n}, for n ∈ N

2 T = D (finite) probability functor

Logic *LA* is the BA generated by $\Diamond_q a$, for $a \in A$, wtr \Diamond_q preserving finite joins Semantics $\delta_X : LPX \to P\mathcal{D}^{\operatorname{op}}X$, $\Diamond_q a \mapsto \{d \in \mathcal{D}X \mid \sum_{x \in a} d(x) \ge q\}$ for $q \in \mathbb{Q} \cap [0, 1]$

A. Balan, A. Kurz, J. Velebil

Posetifications - or how to extend functors from sets to posets

Functor $T : Set \rightarrow Set$

 $\begin{array}{ll} \mbox{Extension} & \mbox{Locally monotone functor} \\ {\cal T}': \mbox{Poset} \to \mbox{Poset} \end{array}$

Posetification Extension with universal property $T' = \text{Lan}_D(DT)$ Poset-left Kan extension

A. Balan, A. Kurz, J. Velebil An institutional approach to positive coalgebraic logic

Theorem (B-Kurz-Velebil13)

Existence

Posetification exists for any functor $T : Set \rightarrow Set$

2 A characterisation of left Kan extensions to posets

For locally monotone T': Poset \rightarrow Poset, TFAE

- T' is Lan_D(DT) for some T : Set \rightarrow Set
- ► T' preserves discrete posets and coinserters of simplicial resolutions

Taking posetifications is functorial

 $[Set, Set] \longrightarrow [Poset, Poset], T \mapsto Lan_D(DT)$

(proof technique: use a "simplicial representation" of posets
)

A. Balan, A. Kurz, J. Velebil

Examples

Kripke functors

$$T ::= \mathrm{Id} \mid T_{X_0} \mid T_0 + T_1 \mid T_0 \times T_1 \mid T^A$$

Posetifications are as expected:

- Posetification of Id_{Set} is Id_{Poset}
- Posetification of the constant functor at set X₀ is the constant functor at discrete poset (X₀,=)
- Posetification of (co)product functor is again the (co)product, this time in Poset
- Posetification of exponential functor TX = X^A is again exponential in Poset

Examples (continued)

Motivating example: T = P, the (finite) power-set functor

Posetification is the (finitely generated) convex power-set functor, with the Egli-Milner order.

Examples (continued)

Motivating example: T = P, the (finite) power-set functor

Posetification is the (finitely generated) convex power-set functor, with the Egli-Milner order.

Distribution functor $\mathcal{D}X = \{d : X \to [0,1] \mid \sum_{x \in X} d(x) = 1\}$ Coalgebras: Markov chains Posetification: $\mathcal{D}'(X, \leq)$ is $\mathcal{D}X$, with order given by

$$d \le d' \Leftrightarrow \exists \omega \in \mathcal{D}(X imes X) \; . \; egin{cases} \omega(x,y) > 0 \Rightarrow x \le y \ \sum_{y \in X} \omega(x,y) = d(x) \ \sum_{x \in X} \omega(x,y) = d'(y) \end{cases}$$

Multiset functor $\mathcal{M}X = \{\varphi : X \to \mathbb{N} \mid \mathsf{supp}(\varphi) < \infty\}$ Coalgebras: multigraphs Posetification: still to compute...

A. Balan, A. Kurz, J. Velebil

Simplicial representation of posets

X poset \implies diagram of (discrete po)sets:

 $X_1 \xrightarrow[d_1]{d_0} X_0$

- ► X₀ is the underlying *set* of X
- X_1 is the set of comparable pairs $X_1 = \{(x, x') \in X \mid x \leq x'\}$
- $d_0, d_1: X_1 \rightarrow X_0$ the usual projections

The coinserter of the diagram is X (coinserter = ordered analogue of a coequalizer)

The left Kan extension (posetification) of any $T : \text{Set} \to \text{Set}$ Put $T'X := \text{coins}(Td_0, Td_1)$, for a poset X The assignment $X \mapsto T'X$ is locally monotone, coincides with T on discrete posets and can be exhibited as left Kan extension of DT along D

Example

•
$$\hat{T}$$
 : Set \rightarrow Set, $\hat{T}X = 2 \times X^A$

 \hat{T} -coalgebras are deterministic automata with alphabet A and binary outputs, deciding if a state is accepting or not

•
$$T : \text{Set} \to \text{Set}, \quad TX = (\mathcal{P}X)^A$$

T-coalgebras are LTS, with label set A

▶ Natural transformation $\sigma : \hat{T} \to T$, $\sigma_X : 2 \times X^A \to (\mathcal{P}X)^A$, $\sigma_X(i, f)(a) = \{f(a)\}$

Then $Mod(\sigma)$: $Coalg(\hat{T}) \rightarrow Coalg(T)$ transforms a deterministic automata into a LTS forgetting whether the resulting state is accepting outputs

$\mathcal{T}:\mathsf{Poset}\to\mathsf{Poset}\text{ locally monotone functor}$

T-coalgebras

Partially ordered set of states $\mathbb{X} = (X, \leq)$ Monotone transition map $\mathbb{X} \xrightarrow{c} T\mathbb{X}$ Monotone translation map $\mathbb{X} \xrightarrow{f} \mathbb{Y}$

Poset-category Coalg(T)

$\mathcal{T}:\mathsf{Poset}\to\mathsf{Poset}$ locally monotone functor

T-coalgebras

Partially ordered set of states $\mathbb{X} = (X, \leq)$ Monotone transition map $\mathbb{X} \xrightarrow{c} T\mathbb{X}$ Monotone translation map $\mathbb{X} \xrightarrow{f} \mathbb{Y}$

Poset-category Coalg(T)

Examples

$T:\mathsf{Poset}\to\mathsf{Poset}$ locally monotone functor

T-coalgebras

Partially ordered set of states $\mathbb{X} = (X, \leq)$ Monotone transition map $\mathbb{X} \xrightarrow{c} T\mathbb{X}$ Monotone translation map $\mathbb{X} \xrightarrow{f} \mathbb{Y}$

Poset-category Coalg(T)

Examples

$T: \mathsf{Poset} \to \mathsf{Poset}$ locally monotone functor

T-coalgebras

Partially ordered set of states $\mathbb{X} = (X, \leq)$ Monotone transition map $\mathbb{X} \xrightarrow{c} T\mathbb{X}$ Monotone translation map $\mathbb{X} \xrightarrow{f} \mathbb{Y}$

Poset-category Coalg(T)

Examples

$T: \mathsf{Poset} \to \mathsf{Poset}$ locally monotone functor

T-coalgebras

Partially ordered set of states $\mathbb{X} = (X, \leq)$ Monotone transition map $\mathbb{X} \xrightarrow{c} T\mathbb{X}$ Monotone translation map $\mathbb{X} \xrightarrow{f} \mathbb{Y}$

Poset-category Coalg(T)

Examples

$T: \mathsf{Poset} \to \mathsf{Poset}$ locally monotone functor

T-coalgebras

Partially ordered set of states $\mathbb{X} = (X, \leq)$ Monotone transition map $\mathbb{X} \xrightarrow{c} T\mathbb{X}$ Monotone translation map $\mathbb{X} \xrightarrow{f} \mathbb{Y}$

Poset-category Coalg(T)

Examples

$T:\mathsf{Poset}\to\mathsf{Poset}$ locally monotone functor

T-coalgebras

Partially ordered set of states $\mathbb{X} = (X, \leq)$ Monotone transition map $\mathbb{X} \xrightarrow{c} T\mathbb{X}$ Monotone translation map $\mathbb{X} \xrightarrow{f} \mathbb{Y}$

Poset-category Coalg(T)

Examples

- ordered automata: $X \to X^A \times 2$, with A the (discrete) input set $x \leq x'$ $a \downarrow \qquad \downarrow a$ $y \leq y'$

- ordered Kripke frames: $X \to \mathcal{P}_c X$, with \mathcal{P}_c the convex powerset functor ordered by

$$U, V \in P_c X, \ U \sqsubseteq V \Leftrightarrow (\ \forall x \in U \ \exists y \in V. \ x \leq y \) \land (\ \forall y \in V \ \exists x \in U. \ x \leq y \)$$

WADT2014

Monotone relations

A monotone relation $X \xrightarrow{\mathbf{r}} Y$ is a monotone map $\mathbf{r} : Y^{\mathsf{op}} \times X \to 2$

$$y' \leq y \quad \wedge \quad \mathbf{r}(y,x) \quad \wedge \quad x \leq x' \implies \mathbf{r}(y',x')$$

Each monotone map $f : X \to Y$ produce two (adjoint) monotone relations:

Each monotone relation $X \xrightarrow{\mathbf{r}} Y$ can be represented as a cospan

$$Y \xrightarrow{r_0} \operatorname{Coll}(\mathbf{r}) \xleftarrow{r_1} X , \qquad \mathbf{r} = r_0^{\Diamond} \circ r_{1\Diamond}$$

where the collage $Coll(\mathbf{r})$ is Y + X, with order

$$y \leq y'$$
 $x \leq x'$ $\mathbf{r}(y,x)$

A. Balan, A. Kurz, J. Velebil

T: Poset \rightarrow Poset locally monotone functor , $Y \xrightarrow{\mathbf{r}} X$ monotone relation

 $T: \mathsf{Poset} \to \mathsf{Poset}$ locally monotone functor, $Y \xrightarrow{\mathbf{r}} X$ monotone relation

 $T: \mathsf{Poset} \to \mathsf{Poset}$ locally monotone functor, $Y \xrightarrow{\mathbf{r}} X$ monotone relation

T: Poset \rightarrow Poset locally monotone functor, $Y \xrightarrow{\mathbf{r}} X$ monotone relation

T: Poset \rightarrow Poset locally monotone functor, $Y \xrightarrow{\mathbf{r}} X$ monotone relation

T preserves exact squares \implies well-behaved relation lifting

Exact squares

(exact square = the ordered analogue of weak pullback)

A. Balan, A. Kurz, J. Velebil An institutional approach to positive coalgebraic logic

Exact squares

(exact square = the ordered analogue of weak pullback)

4

Relation lifting - examples

A. Balan, A. Kurz, J. Velebil

Locally monotone functor T': Poset \rightarrow Poset Coalgebras $X \xrightarrow{c} T'X$, $Y \xrightarrow{d} T'Y$

Locally monotone functor T': Poset \rightarrow Poset Coalgebras $X \xrightarrow{c} T'X$, $Y \xrightarrow{d} T'Y$

A monotone relation $X \xrightarrow{\mathbf{r}} Y$ is called a simulation if

$$x \longrightarrow c(x)$$

$$r$$

$$y \longrightarrow d(y)$$

Locally monotone functor T': Poset \rightarrow Poset Coalgebras $X \xrightarrow{c} T'X$, $Y \xrightarrow{d} T'Y$

A monotone relation $X \xrightarrow{\mathbf{r}} Y$ is called a simulation if

$$x \longrightarrow c(x)$$

$$r \qquad \qquad Rel_T(r)$$

$$y \longrightarrow d(y)$$

Locally monotone functor T': Poset \rightarrow Poset Coalgebras $X \xrightarrow{c} T'X$, $Y \xrightarrow{d} T'Y$

A monotone relation $X \stackrel{\mathbf{r}}{\nrightarrow} Y$ is called a simulation if

Locally monotone functor T': Poset \rightarrow Poset Coalgebras $X \xrightarrow{c} T'X$, $Y \xrightarrow{d} T'Y$

A monotone relation $X \stackrel{\mathbf{r}}{\nrightarrow} Y$ is called a simulation if

A coalgebra morphism $X \xrightarrow{f} Y$ induces simulations $X \xrightarrow{f_0} Y$ and $Y \xrightarrow{f_0} X$ Simulations are closed under composition if T' preserves exact squares Satisfaction relation is monotone wrt simulation order on states:

$$\mathbf{r}(y,x) \ \land \ (x \vDash \varphi) \ \land \ (\varphi \le \psi) \Longrightarrow (y \vDash \psi)$$

for all simulations $X \xrightarrow{\mathbf{r}} Y$, states $x \in X$, $y \in Y$ and formulae $\varphi, \psi \in I'$

Motivating example

Signature T = P (finite) powerset functor

Logic
$$LA$$
 is the BA generated by $(\Box a)_{a \in A}$ such that
 $\Box (a \land b) = \Box a \land \Box b$

Semantics $\delta_X : LPX \to P\mathcal{P}^{op}X, \quad \Box a \mapsto \{b \in \mathcal{P}X \mid b \subseteq a\}$

Posetification $T' = \mathcal{P}_c$ (finitely generated) convex powerset functor

Logic
$$L'A$$
 is the DLat generated by $(\Box a, \Diamond a)_{a \in A}b$ such that
 $\Box(a \land b) = \Box a \land \Box b, \quad \Diamond(a \lor b) = \Diamond a \lor \Diamond b$
 $\Box a \land \Diamond b \le \Diamond(a \land b), \quad \Box(a \lor b) \le \Diamond a \lor \Box b$

Semantics

$$\delta'_X: L'P'X \to P'\mathcal{P'}^{\mathsf{op}}X, \begin{cases} \Box a \mapsto \{b \in \mathcal{P}X \mid b \subseteq a\} \\ \Diamond a \mapsto \{b \in \mathcal{P}X \mid b \cap a \neq \emptyset\} \end{cases}$$

Translation $L'W \cong WL$ induce the DL morphism $\alpha_{\mathcal{P}}$

$$\alpha_{\mathcal{P}}(\Diamond \varphi) = \neg \Box \neg \alpha_{\mathcal{P}}(\varphi) \qquad \alpha_{\mathcal{P}}(\Box \varphi) = \Box \alpha_{\mathcal{P}}(\varphi)$$

A. Balan, A. Kurz, J. Velebil

Motivating example

Signature $T = \mathcal{P}$ (finite) powerset functor

Logic *LA* is the BA generated by $(\Box a)_{a \in A}$ such that $\Box (a \land b) = \Box a \land \Box b$

Semantics $\delta_X : LPX \to P\mathcal{P}^{op}X, \quad \Box a \mapsto \{b \in \mathcal{P}X \mid b \subseteq a\}$

Posetification $T' = \mathcal{P}_c$ (finitely generated) convex powerset functor

Logic *L'A* is the DLat generated by
$$(\Box a, \Diamond a)_{a \in A}b$$
 such that
 $\Box(a \land b) = \Box a \land \Box b, \quad \Diamond(a \lor b) = \Diamond a \lor \Diamond b$
 $\Box a \land \Diamond b \le \Diamond(a \land b), \quad \Box(a \lor b) \le \Diamond a \lor \Box b$

Semantics

$$\delta'_{X}: L'P'X \to P'\mathcal{P}'^{\mathsf{op}}X, \begin{cases} \Box a \mapsto \{b \in \mathcal{P}X \mid b \subseteq a\} \\ \Diamond a \mapsto \{b \in \mathcal{P}X \mid b \cap a \neq \emptyset\} \end{cases}$$

Translation $L'W \cong WL$ induce the DL morphism $\alpha_{\mathcal{P}}$

$$\alpha_{\mathcal{P}}(\Diamond \varphi) = \neg \Box \neg \alpha_{\mathcal{P}}(\varphi) \qquad \alpha_{\mathcal{P}}(\Box \varphi) = \Box \alpha_{\mathcal{P}}(\varphi)$$

A. Balan, A. Kurz, J. Velebil

Motivating example

Signature T = P (finite) powerset functor

Logic *LA* is the BA generated by $(\Box a)_{a \in A}$ such that $\Box(a \land b) = \Box a \land \Box b$

Semantics $\delta_X : LPX \to P\mathcal{P}^{op}X, \quad \Box a \mapsto \{b \in \mathcal{P}X \mid b \subseteq a\}$

Posetification $T' = \mathcal{P}_c$ (finitely generated) convex powerset functor

Logic
$$L'A$$
 is the DLat generated by $(\Box a, \Diamond a)_{a \in A}b$ such that
 $\Box(a \land b) = \Box a \land \Box b, \quad \Diamond(a \lor b) = \Diamond a \lor \Diamond b$
 $\Box a \land \Diamond b \le \Diamond(a \land b), \quad \Box(a \lor b) \le \Diamond a \lor \Box b$

Semantics

$$\delta'_X: L'P'X \to P'\mathcal{P}'^{\mathsf{op}}X, \begin{cases} \Box a \mapsto \{b \in \mathcal{P}X \mid b \subseteq a\} \\ \Diamond a \mapsto \{b \in \mathcal{P}X \mid b \cap a \neq \emptyset\} \end{cases}$$

Translation $L'W \cong WL$ induce the DL morphism $\alpha_{\mathcal{P}}$

$$\alpha_{\mathcal{P}}(\Diamond \varphi) = \neg \Box \neg \alpha_{\mathcal{P}}(\varphi) \qquad \alpha_{\mathcal{P}}(\Box \varphi) = \Box \alpha_{\mathcal{P}}(\varphi)$$

A. Balan, A. Kurz, J. Velebil