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1 Introduction

Endofunctors T : Set→ Set play a crucial role in the theory of coalgebras and the
rich body of results on them [4] has been exploited over the years to prove results
about the category Coalg(T ), and about logics for T -coalgebras, uniformly in the
functor T .

Not as dominant as Set-functors, functors on preorders and on posets have
made their appearance, for example, if one is interested in simulation rather than
only bisimulation [8,12]. Moreover, we think of the categories Preord and Poset
as the natural link between universal coalgebra [14] and domain theory [1], as
domains are special posets.

A general plan of work would be the comprehensive study of Preord- and
Poset-functors and their relationship to Set-functors and to coalgebras. In this
paper, we restrict ourselves to the modest approach of transforming Set-functors
into Preord and Poset-functors and study how some properties important from
the coalgebraic point of view are transfered. Two notions arise here: extension
and lifting of a Set-functor T , where extension means a functor which coincides
with T on discrete set and lifting means that underlying sets are kept but some
order is added.

For extensions, the final coalgebra is discrete, but nevertheless the associated
notion of (bi)simulation on posets can be interesting. For liftings, the order on
the final coalgebra is similarity, an insight going back to [13, Thm 4.1] and [17,
Thm 5.9].

We start from the observation that every finitary Set-functor T has a (canon-
ical) presentation as a coequalizer of two polynomial functors. Since sets are
discrete preorders, this coequalizer can be computed in preorders (or posets) to
yield a functor T̃ : Preord → Preord, which simultaneously lifts and extends T .
As shown in [16] this leads to interesting examples: if T is the finite powerset
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functor, then T̃ on Poset yields the finite(ly generated) convex powerset functor.
On the other hand, the final T̃ -coalgebra is always discrete and, therefore, does
not capture a notion of simulation.

So we study quotients of polynomial functors, but now with ordered coeffi-
cients and show that this is equivalent to the notion of an order T̄ : Set→ Preord
on a functor T from [8]. The latter investigate conditions under which T̄ can be
lifted to a functor T̂ : Preord → Preord. On the other hand, again interpret-
ing the coequalizer of polynomial functors in Preord, we obtain another lifting
Ť : Preord→ Preord, which always exists. We show T̂ = Ť under the conditions
which ensure the existence of T̂ . The table below summarizes the notation for
the various extensions and liftings met in the paper.

T : Set→ Set

T̄ : Set→ Preord (Def. 9)

T̃ : Preord→ Preord Extension (3.2)

T̂ , Ť : Preord→ Preord Liftings (Def.-Prop. 16, resp. Def. 24)

The last section of the paper focuses on Poset-functors obtained from the
previous constructions by taking quotients, with similar results obtained.

Finally, further topics pursued in the paper are the preservation of exact
squares (the ordered analogue of weak pullbacks) and of embeddings. The lat-
ter is motivated by the result on the expressiveness of modal logic over posets
[9], while the former comes from the fact that it replaces preservation of weak
pullbacks as a condition for the existence of the relation lifting on preorders or
posets [5].

Acknowledgements: We would like to thank J. Velebil for pointing out the
importance of exact squares and the reference [7], and the referees for their
valuable suggestions.

2 Preliminaries

We denote by Preord and Poset the categories of preordered sets and of posets,
respectively, and monotone maps. We write D a U : Preord → Set for the
adjunction between the discrete and the forgetful functor. As U has also a right
adjoint (which endows a set with the indiscrete preorder), it preserves all limits
and colimits. In particular, coequalizers in Preord are computed as in Set, namely
for any pair of monotone maps

(X,≤) //// (Y,≤)
π // Z ,

their Set-coequalizer Z, with the smallest preorder such that π is monotone,
becomes the coequalizer in Preord. We denote by Q a J : Poset → Preord the
adjunction between the quotient functor (sending every preordered set to the
quotient poset obtained by identifying all x, y with x ≤ y and y ≤ x) and the
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inclusion functor. For later use, recall that coequalizers in Poset are computed
in two steps: first, take the coequalizer in Preord, then quotient it to obtain a
poset.

An embedding in Preord or Poset is an injective, monotone and order
reflecting map. In both categories, the embeddings are precisely the strong
monomorphisms. An exact square [7] in Preord or in Poset is a diagram

P
α //

β

��

X

f

��
Y

g // Z

(2.1)

with fα ≤ gβ, such that

∀x ∈ X, y ∈ Y. f(x) ≤ g(y) ⇒ ∃p ∈ P. x ≤ α(p) ∧ β(p) ≤ y . (2.2)

If P is {(x, y) ∈ X × Y | f(x) ≤ g(y)} with the product order and α and β
are the usual projections, then (2.2) is obviously satisfied. (2.1) is then called a
comma square.

The terminology is borrowed from [7], where exact squares where introduced
in the framework of 2-categories. See also [11], where equalizers were similarly
replaced by subequalizers. In Set, an exact square is precisely a weak pullback.
In [12], a commutative square having the property (2.2) is called a preorder
quasi-pullback.

Let T be a Set-functor. It is well-known that T is finitary (commutes with
ω-filtered colimits) if and only if it admits a coend representation

TX ∼=
∫ n<ω

Set(n,X) • Tn ,

that is, TX has a presentation given by the coequalizer

∐
m,n<ω

Set(m,n)× Tm×Xn

λX

//
ρX // ∐

n<ω
Tn×Xn

πX // TX , (2.3)

where n refers to {0, 1, . . . , n−1}, and the pair (λX , ρX) is given by λX(f, σ, x) =
(Tf(σ), x) and ρX(f, σ, x) = (σ, x ◦ f), for f : m→ n, x : n→ X and σ ∈ Tm.3

Also, πX(σ, x) = Tx(σ). Intuitively, Tn can be seen as the set of operations of
arity n applied to the variables in X. In the sequel, we shall omit the subscript
X when referring to the maps λX , ρX and πX if the context is clear.

3 From Set to Preord

Section 3.1 considers the notions of extensions and liftings. Section 3.2 intro-
duces the preordification T̃ of a Set-functor T based on the presentation of T .

3 We shall identify functions x : n → X with tuples x = (x0, . . . , xn−1), where xi =
x(i),∀i ∈ {0, . . . , n− 1}.
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Section 3.3 shows that putting an order on the coefficients of the presentation
agrees with the notion of an order T̄ on a Set-functor T from [8]. Section 3.4
recalls how [8] use relation lifting to extend T̄ to an endofunctor T̂ on Preord
and shows that if T preserves weak pullbacks then T̃ preserves exact squares
and, therefore, embeddings. Section 3.5 emphasizes that the order on the final
T̂ -coalgebra coincides with the similarity given by relation lifting. Whereas [8]
use relation lifting to extend T̄ to a functor T̂ on preorder, we can now also use
the presentation to extend T̄ to a functor Ť on preorders. Section 3.6 shows that
Ť = T̂ under the conditions given in [8] for the existence of T̂ .

3.1 Extension and Lifting

Definition 1. Let T be a Set-functor. An extension of T to Preord is a locally
monotone functor Γ : Preord → Preord such that ΓD = DT . A lifting of T to
Preord is a locally monotone functor Γ : Preord→ Preord such that UΓ = TU .

In the following, if T is finitary, we also require Γ (extension or lifting) to be
so.4 Extensions and liftings of a Set-functor to Poset are defined similarly.

It follows that both a lifting and an extension will satisfy the relation T =
UΓD. Intuitively, an extension will coincide with T on discrete sets, while a
lifting means that we put a preorder (respectively a partial order) on TX. Also,
there is an immediate test to decide whether a (finitary) locally monotone Preord
(or Poset)-functor Γ is a lifting or an extension of a Set-functor: namely, compute
T = UΓD and check if ΓD = DT or UΓ = TU .

Remark 2. An extension is not necessarily unique. Let Γ be the functor sending
a preordered set (a poset) to the (discrete) set of its connected components.
Then UΓD = Id. But also the identity on Preord (respectively on Poset) is an
extension of Id, showing that a Set-functor can have different extensions.

The local monotonicity requirement is natural, as the categories Preord and
Poset are enriched over themselves (in the sense that the hom-sets are ordered)
and enriched functors coincide with locally monotone ones. In all constructions
that we shall perform, the local monotonicity of the lifted/extended functor will
come for free.

Note that although Set is (discretely) enriched over Preord (and over Poset),
the adjunction D a U is not, since U is not locally monotone. In particular,
Γ = DTU will not in general be an extension/lifting and we shall replace it by
(3.2) instead.

4 An extension Γ of a finitary functor T need not be finitary: consider the finitary
functor TX = {l : IN → X | l(n) = l(n + 1) for all but a finite number of n}.
It admits the Preord-extension Γ (X,≤X) = {l : (IN,≤IN) → (X,≤X) | l(n) ≤
l(n+ 1) for all but a finite number of n}. But this Γ is not finitary: take the family
of finite sets (n,≤) ordered as usual, with inclusion maps, whose colimit is (IN,≤IN).
Then one can check that colimΓ (n,≤) 6∼= Γ (colim(n,≤)). We would like to thank the
anonymous referee for pointing us this example. We didn’t succeed in constructing
a similar example for liftings.
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If T is a (finitary) Set-functor and Γ is an extension of T , then T -coalgebras
and Γ -coalgebras are related by an adjunction C̃ a D̃ : Coalg(T ) → Coalg(Γ )
which can be easily derived from the adjunction C a D : Set→ Preord between
the connected components functor and the discrete functor, using that T = CΓD
if Γ is an extension of T .5 Consequently, D̃ will preserve limits, in particular,
the final coalgebra (if it exists).

Proposition 3. For any (finitary) extension Γ of a finitary functor T , the final
Γ -coalgebra does exist and is discrete.

The situation slightly changes when we consider a lifting instead of an exten-
sion. In this case there is an obvious forgetful functor Ũ : Coalg(Γ )→ Coalg(T ),
which has a left adjoint D̃ : Coalg(T ) → Coalg(Γ ) (this is not hard to check).
Thus Ũ preserves limits; in particular the underlying set of the final Γ -coalgebra
(if it exists) will be the final T -coalgebra.

Proposition 4. For any (finitary) lifting Γ of a finitary functor T , the final
Γ -coalgebra exists [10] and is built on the same set as the final T -coalgebra.

3.2 First Construction: Order on the Variables

Going back to (2.3), and following [16], we are now interested in this coequalizer
if we replace the set X by a preorder (X,≤). The other sets involved in (2.3)
remain discretely ordered, except for Xn, which carries the product order from
(X,≤). Then λ, ρ are monotone. The coequalizer in Preord of this monotone pair
of maps (λ, ρ) has the same underlying set TX, but now with a preorder E:

∐
m,n<ω

Set(m,n)× Tm× (Xn,≤)
λ
//

ρ // ∐
n<ω

Tn× (Xn,≤)
π //(TX,E) (3.1)

If f : (X,≤) → (Y,≤) is a monotone map, it follows that Tf : (TX,E) →
(TY,E) is monotone. Thus we obtain a functor which is also locally monotone

T̃ : Preord→ Preord, T̃ (X,≤) = (TX,E) (3.2)

It simultaneously defines an extension and a lifting of T . In fact, it is an enriched
coend T̃ (X,≤) ∼=

∫ n<ω
[Dn, (X,≤)] • DTn×, where [Dn, (X,≤)] refers to the

preordered set (internal hom) of all monotone maps from Dn to X.
A functor may have different presentations, 6 but we have

Proposition 5. T̃ is independent of the chosen presentation of T .

Example 6. 1. Let T = Pf , the finite powerset functor. For (X,≤) a preordered
set, the above construction leads to the Egli-Milner preorder on PfX: u E v
for u, v ⊆ X finite iff ∀a ∈ u ∃b ∈ v. a ≤ b and ∀b ∈ v ∃a ∈ u. a ≤ b.

5 We leave the details to the reader. Notice there is a similar duality for Poset-
extensions.

6 For example, the finite powerset functor Pf can be presented as in (2.3), but also as
a quotient of the list-functor

∐
n<ω

Xn.



6 A. Balan and A. Kurz

2. Take TX = 1 + X the lift functor. For (X,≤) a preordered set, the corre-
sponding order E on 1 +X will be the coproduct order.

3. For the list functor TX = X∗, a preorder on lists is obtained as follows:

[x0 . . . xn−1] E [y0 . . . ym−1] ⇔ m = n ∧ xi ≤ yi, ∀i < n .

In Sect. 3.4 we will see another description of E based on relation liftings.

3.3 Second Construction: Order on the Operations

We now equip a functor T with an order on the coefficients of its presentation.

Definition 7. Let T be a finitary Set-functor. We say that T has a presentation
with a preorder, if for each finite arity n, there is a preorder ≤ on Tn such that
Tf : (Tm,≤)→ (Tn,≤) is monotone for all f : m→ n.

There are many functors who carry a natural order, as eg the powerset functor
(with the inclusion order), or the lift functor TX = {⊥}+X, with the flat order
⊥≤ x, ∀x ∈ X (see Example 11). The latter is a special case of the following:

Example 8. Let T be a (finitary) Set-functor, but not the constant functor map-
ping everything to the empty set. Then T1 6= ∅. Specify a preorder on T1. This
will induce a preorder on Tn for all n < ω via the image of the map n → 1
through T , namely the preorder on Tn is the inverse image of the order on T1.
Then we obtain an order on T .

Definition 9. Let T be a finitary functor with preorder ≤. Consider on TX the
preorder v obtained from the coequalizer

∐
m,n<ω

Set(m,n)× (Tm,≤)×Xn

λ
//

ρ // ∐
n<ω

(Tn,≤)×Xn π //(TX,v) (3.3)

This defines a functor T̄ : Set→ Preord, T̄X = (TX,v).

Notice that ρ is always monotone, while λ is so by Def. 7. Therefore it makes
sense to compute the above coequalizer in Preord. The functor T̄ is finitary and
satisfies UT̄ = T . In [8], such a functor is called an order on T . We keep the
same terminology. This means that on each TX there is a preorder v, and these
preorders must be preserved by renaming: for each map f : X → Y , its image
Tf : (TX,v)→ (TY,v) is monotone. Choosing n for X, we find

Proposition 10. (Tn,v) = (Tn,≤).

Example 11. 1. Take all Tn to be discretely ordered. Then T automatically
satisfies Def. 7. The preorder obtained on TX will be the discrete one, as
any coequalizer of discrete preordered sets is again discrete (D preserves all
colimits being left adjoint, in particular coequalizers).
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2. Take all Tn to be indiscretely ordered. If T is finitary then all (TX,v) =
TX ×TX are again indiscrete. Indeed, take any u, v ∈ TX. As T is finitary,
we can find a finite set n and an injection x : n → X such that u, v lie in
the image of the map Tx : Tn → TX. So u = Tx(σ) and v = Tx(τ) with
σ, τ ∈ Tn. As Tx is monotone and σ, τ are comparable, it follows that u v v.

3. Let T = Pf be the finite powerset functor, with the inclusion order on Pf (n).
Then the resulting order on any PfX is again the inclusion: take any finite
subsets u, v ⊆ X. Then u v v if we can find σ ⊆ n, x : n → X, τ ⊆ m,
y : m → X such that π(σ, x) = u, π(τ, y) = v, and (σ, x) and (τ, y) are
comparable in

∐
n<ω
Pf (n) ×Xn. But this can be possible only if both lie in

the same component, so m = n, and share same variables, x = y. It follows
σ ⊆ τ , hence u = Pf (x)(σ) ⊆ Pf (x)(τ) = v. Similarly, if on Pf (n) we
consider the converse inclusion, the resulting preorder v is ⊆op.

4. Take now TX = {⊥} + X. On the associated signature Tn = {⊥} + n
consider the flat order ⊥ < i,∀i < n.

0 1 . . . n− 1

⊥

The quotient function π :
∐
n<ω

Tn×Xn → TX maps (⊥, x : n→ X) to ⊥ and

(i, x : n → X) to xi. It follows now easily that ⊥ will be the least element
in ({⊥}+X,v) and that different elements of X are not comparable, hence
on TX we get the same flat order.

5. Consider the polynomial functor TX = IN × X. On each IN × n, take the
preorder given by (N, i) ≤ (M, j) ⇔ N < M or (N = M and i = j). This
is precisely the lexicographic order with respect to the usual ordering of IN,
when n is considered discrete. Then the induced preorder on the quotient
TX is similar: two pairs (N, x) and (M,y) in IN×X are comparable if either
are equal or the first components are comparable. In the future, we shall
denote this functor by TX = IN nX to emphasize the special preorder.

6. Let T = (−)32 be the functor introduced by Aczel and Mendler in [2], given
on objects by X3

2 = {x = (x1, x2, x3) ∈ X3 | |(x1, x2, x3)| ≤ 2}. There is a
natural (pre)ordering v on X3

2 as follows: all triples (x1, x2, x3) ∈ X3
2 with

equal components are minimal elements, all the others are maximals, and
a minimal element is comparable with a maximal one only if they share a
common component, as in the picture below:

. . . (x1, x2, x1) (x2, x2, x3) . . .

(x1, x1, x1) (x2, x2, x2) (x3, x3, x3)

We shall call this the zig-zag preorder. If we restrict it to Tn and compute
(TX,v) as in (3.3), we obtain again precisely the zig-zag order.

7. Take the list functor TX = X∗. Put on each TX the following order

[x0 . . . xn−1] ≤ [y0 . . . ym−1]⇔ ∃ϕ : n→ m . xi = yϕ(i),∀i < n ,
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see [8, Example 2.2.(3)], where the function ϕ is required to be strictly mono-
tone. It means that two lists are comparable if one can be obtained from the
other by removing some elements. In particular, two lists of same length are
comparable only if they are equal. By a similar reasoning as in the previous
examples, restricting this preorder to all Tn and computing v gives the same
order.

The previous examples suggest a correspondence between orders T̄ on T and
preorders on the associated signature as in Def. 7. This is indeed the case.

Proposition 12. Let T be a finitary Set-functor. Then there is a bijective cor-
respondence between orders on T and presentations with preorders.

3.4 Lifting T to T̂ Using Relators

Starting from an order T̄ on T , we will see in this section how a weak pullback
preserving T lifts to a Preord-endofunctor T̂ using relators. We present below a
very brief overview on relators, for more details we refer to [15] or [8].

Let T be a Set-functor. For two sets X,Y and a relation R ⊆ X × Y , the
T -relation lifting of R is

RelT (R) = {(u, v) ∈ TX × TY | ∃w ∈ TR . Tπ1(w) = u ∧ Tπ2(w) = v}

where π1, π2 are the projections X R
π1oo π2 //Y . The relation lifting satisfies

the following properties ([15]):

1. Equality: =TX = RelT (=X).
2. Inclusion: if R ⊆ S then RelT (R) ⊆ RelT (S).
3. Composition: if R ⊆ X × Y and S ⊆ Y × Z, then RelT (S ◦ R) ⊆ RelT (S) ◦

RelT (R), with equality if and only if T preserves weak pullbacks.
4. Inverse images (substitution): given functions f : X → X ′, g : Y → Y ′ and

relation R′ ⊆ X ′ × Y ′, then

RelT ((f × g)−1(R′)) ⊆ (Tf × Tg)−1(RelT (R′)) (3.4)

with equality if T preserves weak pullbacks.

An immediate consequence is the following: if T preserves weak pullbacks and
≤ is a preorder on a set X, then RelT (≤) is a preorder on TX.

Proposition 13. Let T be a finitary Set-functor which preserves weak pullbacks.
Then for each preordered set (X,≤), RelT (≤) coincides with the preorder E on
TX constructed in Sect. 3.2.7

7 Notice that the only thing needed in Prop.13 is that RelT (≤) is a preorder. This
is of course implicit when T preserves weak pullbacks, as mentioned earlier. We do
not know if there are examples when RelT (≤) is a preorder, for any preordered set
(X,≤), without requesting T to preserve weak pullbacks.
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Assume now that there is an order on T , given by T̄X = (TX,v). For any
relation R ⊆ X × Y , the associated relation on TX × TY given by

RelvT (R) =v ◦RelT (R)◦ v

is usually called a T -relator, or lax T -relation lifting ([15], [8]). Equivalently,

(u, v) ∈ RelvT (R) ⇐⇒ ∃w ∈ T (R) . u v Tπ1(w) and Tπ2(w) v v

The T -relator satisfies the following properties ([8], Lemma 4.2):

1. vTX = RelvT (=X).

2. If R ⊆ S then RelvT (R) ⊆ RelvT (S).

3. If R ⊆ X × Y and S ⊆ Y × Z, then RelvT (S ◦R) ⊆ RelvT (S) ◦ RelvT (R).
4. For any functions f : X → X ′, g : Y → Y ′ and any relation R′ ⊆ X ′ × Y ′,

RelvT ((f × g)−1(R′)) ⊆ (Tf × Tg)−1(RelvT (R′)).

Definition 14. Let T be a Set-endofunctor. We say that an order on T , given
by T̄ : Set→ Preord, T̄X = (TX,v),

1. is stable (preserves inverse images) if for any two functions f : X → X ′,
g : Y → Y ′ and any relation R′ ⊆ X ′ × Y ′,

RelvT ((f × g)−1(R′)) = (Tf × Tg)−1(RelvT (R′)). (3.5)

2. preserves composition of relations if for any R ⊆ X × Y and S ⊆ Y × Z,

RelvT (S ◦R) = RelvT (S) ◦ RelvT (R). (3.6)

3. preserves composition of preorders if for any preordered set (X,≤),

RelvT (≤) ◦ RelvT (≤) ⊆ RelvT (≤). (3.7)

Proposition 15. For any order on T , we have (3.5)⇒(3.6)⇒(3.7).

Now the purpose of all these preparations is the following

Definition-Proposition 16. Let T be a finitary functor having an order T̄
which preserves composition of preorders. Then it lifts to a Preord-endofunctor
T̂ ([8], Lemma 5.5), given by T̂ (X,≤) = (TX,RelvT (≤)).

The functor T̂ is locally monotone (defining thus a lifting in the sense of Def. 1):
assume f, g : (X,≤) → (Y,≤) are monotone maps such that f ≤ g pointwise.
Then for any u ∈ TX, we have u v u and

v = RelvT (=X) ⊆ RelvT ((f × g)−1(≤)) ⊆ (Tf × Tg)−1(RelvT (≤))

therefore (Tf(u), T g(u)) ∈ RelvT (≤).
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It follows that any finitary functor having an order which preserves compo-
sition of preorders has a lifting8 to Preord. We also point out that having an
order which preserves composition of relations (preorders) is not equivalent nor
implied by the preservation of weak pullbacks by the functor T itself, unless
discrete preorder is involved (see Ex. 17.1 and also Ex. 17.5 and Ex. 17.6). Any
polynomial functor has an order which preserves composition of relations (see [8],
Def. 4.4 and the following paragraph there), but this property is not necessarily
preserved by their quotients (see below Example 17.5).

In all examples below, T is a finitary Set-functor.

Example 17. 1. Assume the ordering on the operations of T is discrete. Then
v is equality and RelvT (R) = RelT (R). Therefore the order on T is stable iff
T preserves weak pullbacks. In this case, the lifting of T to Preord will be
T̂ (X,≤) = (TX,RelT (≤)). In view of Prop. 13, we obtain that T̂ = T̃ .

2. Assume that the order on the operations of T is indiscrete. We have seen
that v = TX × TX, hence RelvT (R) = TX × TY , for any R ⊆ X × Y ,
provided RelT (R) is not empty. Actually, what we only need is that T (≤)
to be non empty, which happens for all (finitary) functors T except for the
constant one mapping everything to the empty set. Then (4) holds with
equality, hence again we get a lifting by T̂ (X,≤) = (TX, TX × TX).

3. Let T be now the finite power-set functor Pf , with inclusion as (pre)order
on each PfX. Then for R ⊆ X × Y , RelPfX(R) can be described as follows
(see for example [15], Thm. 2.3.2):

(u, v) ∈ RelPfX(R)⇔ ∀a ∈ u ∃b ∈ v . (a, b) ∈ R ∧ ∀b ∈ v ∃a ∈ u . (a, b) ∈ R

An easy computation shows now that the order X 7→ (PfX,⊆) preserves

composition (is even stable), hence Pf lifts to a functor P̂f (X,≤)

= (PfX,Rel⊆PfX
(≤)) on Preord, with ordering

(u, v) ∈ Rel⊆Pf
(≤) ⇔ ∀a ∈ u ∃b ∈ v . a ≤ b

4. For TX = {⊥} + X, the order from Example 11.4 preserves at least com-
position of preorders, as the relation extension is RelT (R) = R ∪ {(⊥,⊥)}.
The resulting functor T̂ will then add a bottom element to any preordered
set (X,≤).

5. Take now the finitary functor TX = X3
2 . The relation lifting associated to

this functor is

((x1, x2, x3), (y1, y2, y3)) ∈ Rel(−)32(R)⇔ ((x1, y1), (x2, y2), (x3, y3)) ∈ R3
2

for R ⊆ X × Y . It is well-known that this functor does not preserve weak
pullbacks. Recall that we have introduced the zig-zag preorder on TX (Ex-
ample 11). This order is not stable nor preserves composition: for stability,

8 This is no longer an extension: for discrete sets, T̂ (X,=) = (TX,v) is not necessarily
discrete.
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take X = {0}, Y = {1} and X ′ = Y ′ = {0, 1}, with f, g the inclusion

maps, and relation R′ = =X′ . Then (Tf × Tg)−1(RelvT (=)) = TX × TY ,

while RelvT ((f × g)−1(=)) = ∅. For preservation of composition, take again
X = {0, 1} and the (preorder) relation R = {(0, 0), (0, 1), (1, 1)}. Then for

example ((0, 0, 1), (0, 1, 0)) ∈ Relv
(−)32

(R)◦Relv
(−)32

(R), but ((0, 0, 1), (0, 1, 0)) /∈
Relv

(−)32
(R ◦R) = Relv

(−)32
(R).

6. For the polynomial functor TX = INnX lexicographically ordered, a similar
argument to the one in [8] shows that it is not stable. But it preserves
composition with respect to preorders: if (X,≤) is a preordered set, then

RelvT (≤) is again a preorder, namely the usual lexicographic one on IN nX:

((n, x), (m, y)) ∈ RelvT (≤)⇔ n < m or (n = m and x ≤ y)

Proposition 18. Let T be a finitary Set-functor having an order T̄ (X,≤) =
(TX,v). Then the following are equivalent:

1. The order is stable.
2. T̄ maps weak pullbacks to exact squares.
3. The lifted functor T̂ preserves exact squares.

Corollary 19. Let T be a finitary Set-functor which preserves weak pullbacks.
Then the Preord-lifting T̃ from (3.2) preserves exact squares.

Intuitively, we could simply say that if a Set-functor T preserves exact squares,
then its lifting T̃ does so.

It is well known that all Set-functors preserve injective maps with non-empty
domain. In Preord we are more interested in embeddings, and they are preserved
if the functor preserves exact squares, see [7]. Hence we have the following.

Proposition 20. If the order on T is stable, then T̂ preserves embeddings.

Corollary 21. If T preserves weak pullbacks, then T̃ preserves embeddings.

3.5 Preorder on the Final Coalgebra

There are several papers in the literature describing order relations on the final
T -coalgebra (see for example [3] or [8]); as it is expected, there is a connection
with the order on the final coalgebra of the lifted functor, first emphasized in
[12]. This section intends to present a direct approach of that.

We shall assume that T has a stable order T̄X = (TX,v) and we shall work

with the associated lifting T̂ (X,≤) = (TX,RelvT (≤)). Recall from [8] that a T -

simulation with respect to the order v between two coalgebras X
c→ TX and

Y
d→ TY is a relation R ⊆ X×Y such that (x, y) ∈ R⇒ (c(x), d(y)) ∈ RelvT (R).

In particular, for any T̂ -coalgebra (X,≤)
c→ (TX,RelvT (≤)), the monotonicity of

c implies the preorder ≤ is a simulation on X. The greatest simulation between
two coalgebras is called similarity and denoted by .. It satisfies the following
([8], Prop. 5.4):
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1. For any T -coalgebra homomorphisms X
f→ Z, Y

g→ W and x ∈ X, y ∈ Y ,
we have x . y ⇔ f(x) . g(y).

2. Similarity on a coalgebra X
c→ TX is a preorder.

Let now Z
z→ TZ be the final T -coalgebra (which exists by the finitarity as-

sumption on T ). As T̂ is also finitary and Ũ preserves limits, the final T̂ -coalgebra

is also Z, but now with some preorder ≤Z such that (Z,≤Z)
z→ (TZ,RelvT (≤Z))

is an isomorphism in Preord. In particular, ≤Z is a simulation, hence ≤Z ⊆ .Z .
Take (X,≤)

c→ (TX,RelvT (≤)) a T̂ -coalgebra, with (monotone) anamorphism

(X,≤)
!→ (Z,≤Z). By (1) above, (X,≤)

!→ (Z,.Z) is monotone and a T̂ - coal-
gebra map, hence in the following diagram the identity on Z is monotone9,
implying .Z ⊆ ≤Z .

(X,≤)
! //

! ''

(Z,.Z)

id��
(Z,≤Z)

We have thus the following:

Proposition 22. The preorder on the final T̂ -coalgebra is the similarity.10

Remark 23. By [8], Thm. 6.2, if the order satisfies the condition

RelvT (R1) ∩ Relv
op

T (R2) ⊆ RelT (R1 ∩R2) (3.8)

for any two relations R1, R2 ⊆ X × Y , then the two-way similarity . ∩ .op

is the same as bisimilarity. This holds for all coalgebras, in particular for the
final coalgebra. But bisimilarity on final coalgebra is equality, hence the above
condition implies that similarity on the final coalgebra Z is a partial order.

3.6 Third Construction: Order the Variables and Operations

Here we lift an order T̄ on T to a Preord-endofunctor Ť even in the case that
T does not preserve weak pullbacks. The idea is to subsume the constructions
in Sect 3.2 and 3.3 in a single one: putting order on the signature (as in Def. 7)
and building the coequalizer of (2.3) in Preord.

Definition 24. Let T be a functor with preorder v. Denote by Ť the functor
given by the coequalizer (TX,�) below

∐
m,n<ω

Set(m,n)× (Tm,v)× (Xn,≤)
λ
//

ρ // ∐
n<ω

(Tn,v)× (Xn,≤) π
//(TX,�)

9 As (Z,.Z) is a T̂ -coalgebra, there is unique monotone map from it to the final T̂ -
coalgebra. Via the forgetful functor, this is mapped to the unique T -coalgebra map
Z → Z which is obviously the identity.

10 See also [13], Thm. 4.1 and [17], Thm. 5.6.
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where the domain and the codomain of the coequalizer pair carry the coproduct
preorder and each component of the coproduct has the product preorder (where
Set(m,n) is discrete, while Xn has the product preorder obtained from the one
on X).

Observe that Ť is locally monotone and that v ⊆ �. Moreover, we have

Theorem 25. Let T be a finitary Set-endofunctor which preserves weak pull-
backs and has an order which preserves composition of preorders. Then the
liftings Ť and T̂ coincide.

Example 26. The construction presented at the beginning of this section says
that we can still get a lifting, independently of T preserving weak pullbacks or
the order preserving composition of relations; for example, consider the functor
TX = X3

2 with the zigzag order. The corresponding preorder � can then be
described as follows: for (x1, x2, x3), (y1, y2, y3) ∈ X3

2 , (x1, x2, x3) � (y1, y2, y3)
if xi ≤ yi,∀1 ≤ i ≤ 3, or x1 = x2 = x3 and there is some 1 ≤ i ≤ 3 with xi ≤ yi.

4 From Preord to Poset

Given a finitary Set-functor T , assume that we have an extension (or a lifting) Γ
to Preord. We can move further to Poset by taking the locally monotone functor
T ′ = QΓJ : Poset → Preord, where Q a J is the (monadic) adjunction between
the quotient and the inclusion functor mentioned in the preliminaries. If Γ is
finitary, then T ′ is also, since both J andQ preserve filtered colimits.11 Regarding
coalgebras, notice that each Γ -coalgebra can be quotiented to a T ′-coalgebra,
thus there is a functor Q′ : Coalg(Γ ) → Coalg(T ′), which sends a Γ -coalgebra

X
c→ ΓX to QX

Qc→ QΓX → T ′QX.
Now the discussion bifurcates according to Γ being an extension or a lifting.
If Γ is an extension, a simple computation shows that T ′ maps discrete sets

to discrete sets, thus it is a Poset-extension of T . Moreover, a similar discussion
to the one in Section 3.1 shows that the final T ′-coalgebra exists and is discrete,
with same carrier as the final T -coalgebra, once we assume T (and Γ ) finitary.

For the particular extension T̃ (X,≤) = (TX,E) of a finitary functor T from
Section 3.2, relations (3.1) and (3.2), let T ′(X,≤) be the quotient Poset-functor,
whose ordering will be denoted for convenience with same symbol E. In case T
preserves weak pullbacks, E on TX has been expressed in terms of the relation
lifting (Prop. 13). An immediate result is

Proposition 27. Let T be a finitary weak pullbacks preserving Set-functor and
T ′ = QT̃J its Poset-extension, with T̃ as in (3.1). Then T ′ preserves exact
squares and embeddings.

Remark 28. If T does not preserve weak pullbacks, then T ′ may fail to preserve
embeddings, as we can see from the following example: take T to be the functor

11 Q is left adjoint, while for J it follows from [6], vol. 2, Prop. 5.5.6.
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part of the Boolean algebra monad. On finite sets, we can identify T with the
composition of the contravariant power-set functor with itself. Then T does not
preserve weak pullbacks [14]. We shall show that the corresponding extension
to Poset does not preserve embeddings. For this, take the embedding of the
discrete two-elements poset {a, b} into the poset {a, b, c} ordered by a < c, b < c.
Then T ′({a, b},=) is the (discrete) free Boolean algebra on two generators with
16 elements. For the poset (Boolean algebra) (T ′({a, b, c},≤),E), notice that
monotonicity of operations implies ⊥ E a ∧ ¬a E a ∧ ¬c E c ∧ ¬c = ⊥, thus
a E c. Similarly, ⊥ E a ∧ ¬a E c ∧ ¬a E c ∧ ¬c = ⊥ implies c E a. Thus
the images of a and c in T ′({a, b, c},≤) coincide; similarly for the images of b
and c, which makes us conclude that T ′({a, b, c},≤) has only 4 elements (the free
Boolean algebra on only one generator). Hence T ′ cannot preserve the embedding
({a, b},=) ↪→ ({a, b, c},≤).

In case Γ is a lifting, there is a partial order on TX for each (X,≤) and
T ′(X,≤) is the quotient of TX with respect to the equivalence relation induced
by that preorder. The resulting functor T ′ is, in general, no longer a lifting of T
to Poset nor an extension.

However, if we consider a particular lifting of T , namely T̂ , with respect to an
order v which is already a partial order, then by restricting to posets we obtain
that RelvT (≤) is a partial order on TX (for each poset (X,≤)), once we assume

that v preserve compositions of preorders and satisfies (3.8). In this case, QT̂J
can be identified with T̂ J and defines a lifting of T to Poset. In the general case,
however, the best that we can say is that the analogue of Prop. 10 holds, namely
that T ′ will coincide with T on finite sets n, with partial order v.

Example 29. 1. Let D be the finite subdistribution functor, DX = {d : X →
[0, 1] |

∑
x∈X

d(x) ≤ 1, |supp(d)| < ∞}, with the pointwise order d v d′ ⇔

d(x) ≤ d′(x),∀x ∈ X. The corresponding D̂ maps posets to posets (see
comments after Def. 11 in [12]).

2. Take now Pf , the finite powerset functor, with the inclusion order. Then this
time the Poset-functor is indeed a quotient, namely the finite convex power
set.

Although T ′ is not a lifting nor an extension, it still behaves well with respect
to exact squares (and embeddings):

Proposition 30. Let T be a finitary Set-functor having an order T̄ (X,≤) =
(TX,v) which is stable and T ′ = QT̂J as above. Then T ′ preserves exact
squares, thus also embeddings.

5 Conclusion

Considering the rich body of results on Set-functors, see eg [4], our investigations
suggest that analogous results for functors on preorders or on posets would be
of interest to coalgebra. For example, characterizations of functors that preserve
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exact squares or embeddings would be of interest. This also links the current
paper with investigations on coalgebraic logic over preorders or posets, where
first steps have been taken on logics given by predicate liftings in [9] and on
Moss’s ∇ in [5]. Another direction is to follow the connection with coalgebraic
(bi)simulations like in [8,12].
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4. Adámek, J., Trnková, V.: Automata and Algebras in Categories. Mathematics
and Its Applications: East European Series, vol. 37. Kluwer Academic Publishers,
Dordrecht (1990)
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