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Abstract. Positive modal logic was introduced in an influential 1995
paper of Dunn as the positive fragment of standard modal logic. His
completeness result consists of an axiomatization that derives all modal
formulas that are valid on all Kripke frames and are built only from
atomic propositions, conjunction, disjunction, box and diamond.

In this paper, we provide a coalgebraic analysis of this theorem, which
not only gives a conceptual proof based on duality theory, but also gen-
eralizes Dunn’s result from Kripke frames to coalgebras of weak-pullback
preserving functors.

For possible application to fixed-point logics, it is note-worthy that the
positive coalgebraic logic of a functor is given not by all predicate-liftings
but by all monotone predicate liftings.
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1 Introduction

Consider modal logic as given by atomic propositions, Boolean operations, and
a unary box, together with its usual axiomatisation stating that box preserves
finite meets. In [II], Dunn answered the question of an axiomatisation of the
positive fragment of this logic, where the positive fragment is given by atomic
propositions, lattice operations, and unary box and diamond.

Here we seek to generalize this result from Kripke frames to coalgebras for
a weak pullback preserving functor. Whereas Dunn had no need to justify that
the positive fragment actually adds a modal operator (the diamond), the general
situation requires a conceptual clarification of this step. And, as it turns out,
what looks innocent enough in the familiar case is at the heart of the general
construction.

In the general case, we start with a functor 7" : Set — Set. From T we
can obtain by duality a functor L : BA — BA on the category BA of Boolean
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algebras, so that the free L-algebras are exactly the Lindenbaum algebras of the
modal logic. We are going to take the functor L itself as the category theoretic
counterpart of the corresponding modal logic. How should we construct the
positive T-logic? Dunn gives us a hint in that he notes that in the same way
as standard modal logic is given by algebras over BA, positive modal logic is
given by algebras over the category DL of (bounded) distributive lattices. It
follows that the positive fragment of (the logic corresponding to) L should be
a functor L’ : DL — DL which, in turn, by duality, should arise from a functor
T’ : Pos — Pos on the category Pos of posets and monotone maps.

The centre-piece of our construction is now the observation that any finitary-
functor T : Set — Set has a canonical extension to a functor T” : Pos — Pos.
Theorem then shows that this construction T'+— 71" — L’ indeed gives the
positive fragment of L and so generalizes Dunn’s theorem.

An important observation about the positive fragment is the following: given
any Boolean formula, we can rewrite it as a positive formula with negation only
appearing on atomic propositions. In other words, the translation 8 from positive
logic to Boolean logic given by

B(0¢) = ~0-5(¢) (1)
B(0¢) = 0B(¢) ()

induces a bijection (on equivalence classes of formulas taken up to logical equiv-
alence). More algebraically, we can formulate this as follows.

Given a Boolean algebra B € BA, let LB be the free Boolean algebra gener-
ated by {{J0b | b € B} modulo the axioms of modal logic. Given a distributive lat-
tice A, let L' A be the free distributive lattice generated by {¢ : ¢ € A} U{0¢ |
¢ € A} modulo the axioms of positive modal logic. Further, let us denote by
W : BA — DL the forgetful functor. Then the above observation that every
modal formula can be written, up to logical equivalence, as a positive modal
formula with negations pushed to atoms, can be condensed into the statement
that the (natural) distributive lattice homomorphism

Bs: L'WB — WLB (3)

induced by 7 is an isomorphism.

Our main results are the following. If 7" is an extension of T and L, L’ are
the induced logics, then 8 : L'W — WL exists. If, moreover, T is the induced
extension (posetification) of T', then @ is an isomorphism. Furthermore, in the
same way as the induced logic L can be seen as the logic of all predicate liftings
of T, the induced logic L’ is the logic of all monotone predicate of T. These
results depend crucially on the fact that the posetification T” of T' is defined as a
completion with respect to Pos-enriched colimits. On the algebraic side the move
to Pos-enriched colimits corresponds to an extension of the presentation results
of [24] to functors on (finitary) varieties enriched over posets. In particular,
a functor L' : DL — DL preserves enriched sifted colimits if and only if it
is definable by monotone operations and equations. To see the relevance of a
presentation result specific to monotone operations, observe that in the example
of positive modal logic it is indeed the case that both [J and ¢ are monotone.
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2 On coalgebras and coalgebraic logic

I.  Coalgebras. A Kripke model (W, R,v) with R C W x W and v : W — 2AtProp
can also be described as a coalgebra W — PW x 24P where PW stands for
the powerset of W. This point of view suggests to generalize modal logic from

Kripke frames to coalgebras
E: X ->TX

where T may now be any functor T : Set — Set. We obtain back Kripke models
by putting TX = PX x 22PrP_We also get the so-called bounded morphisms or
p-morphisms as coalgebras morphisms, that is, as maps f : X — X’ such that

Tfot=¢o .

1I.  Coalgebras and algebras. More generally, for any category C and functor
T : C — C, we have the category Coalg(T") of T-coalgebras with objects and
morphisms as above. Dually, Alg(T) is the category where the objects TX L X
are arrows in C and where the morphisms f : (X,a) — (X,a’) are arrows
f:X — X’ in C such that foa =o' oTf. It is worth noting that T-coalgebras
over C are dual to T°P-algebras over CP.

III.  Duality of Boolean algebras and sets. The abstract duality between alge-
bras and coalgebras becomes interesting if we carry it over a concrete duality,
such as the dual adjunction between the category Set of sets and functions and
the category BA of Boolean algebras. We denote by P : Set®” — BA the functor
taking powersets and by S : BA — Set®”? the functor taking ultrafilters. Alterna-
tively, we can describe these functors by PX = Set(X,2) and SA = BA(A4,2),
which also determines their action on arrows (here 2 denotes the two-element
Boolean algebra). P and S are adjoint, satisfying Set(X,SA) = BA(A, PX).
Restricting P and S to finite Boolean algebras/sets, this adjunction becomes a
dual equivalence.

1V. Boolean logics for coalgebras, syntax. What now are logics for coalgebras?
We follow a well-established methodology in modal logic ([7]) and study modal
logics via the associated category of modal algebras. More formally, given a
modal logic £ extending Boolean propositional logic and with associated cate-
gory A of modal algebras, we describe £ by a functor

L:BA — BA

so that the category Alg(L) of algebras for the functor L coincides with A. In
particular, the Lindenbaum algebra of £ will be the initial L-algebra.

Ezample 2.1. Let T = P be the powerset functor and L : BA — BA be the
functor mapping an algebra A to the algebra LA generated by Ca, a € A, and
quotiented by the relation stipulating that [ preserves finite meets, that is,

OT=T O(a Ab) =Oa A Db (4)

Remark 2.2. Alg(L) is the category of modal algebras (Boolean algebras with
operators), a result which appears to be explicitly stated first in [I].
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V. Boolean logics for coalgebras, semantics. The semantics of such a logic is
described by a natural transformation

6:LP — PT°?

Intuitively, each modal operator in LPX is assigned its meaning as a sub-
set of TX. More formally, § allows us to lift P : Set”” — BA to a functor
P* : Coalg(T) — Alg(L), and if we take a formula ¢ to be an element of the
initial L-algebra (the Lindenbaum algebra of the logic), then the semantics of ¢
as a subset of a coalgebra (X, ¢) is given by the unique arrow from that initial
algebra to P#(X,¢&).

Example 2.3. We define the semantics dx : LPX — PP°?X by, for a € PX,
Oa—{bePX|bCa}. (5)

Remark 2.4. Tt is an old result in domain theory that dx is an isomorphism for
finite X ([1]). This implies completeness of axioms with respect to Kripke
semantics.

VI.  Functors having presentations by operations and equations. One might ask
when a functor L : BA — BA can legitimately be considered to give rise to a
modal logic. For us, in this paper, a minimal requirement on L is that Alg(L) is a
variety in the sense of universal algebra, that is, that Alg(L) can be described by
operations and equations, the operations then corresponding to modal operators
and the equations to axioms. This happens if L is determined by its action on
finitely generated free algebras (see [24]). These functors are also characterized
as functors having presentations by operations and equations, or as functors
preserving sifted colimits. Most succinctly, they are precisely those functors that
arise as left Kan-extensions of the inclusion functor of the full subcategory of
BA consisting of free algebras on finitely many generators.

VII. The (finitary, Boolean) coalgebraic logic of a Set-functor. The general
considerations laid out above suggest to define the finitary (Boolean) coalgebraic
logic associated to a given functor T : Set — Set as

LFn = PT°?SFn (6)

where F'n denotes the free Boolean algebra over n generators, for n ranging over
natural numbers. The semantics d is given by observing that natural transfor-
mations 0 : LP — PT are in bijection with natural transformations

0:L— PT?S (7)

so that we can define & to be the identity on finitely generated free algebras.
More explicitly, LA can be represented as the free BA over {o(ay,...a,) |

o € PT?SFn,a; € A,n < w} modulo appropriate axioms, with d x : LPX —

PT°PX given by do(ay,...a,) = PT°?(a)(c) where a : X — SFn is the adjoint
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transpose of (ay,...a,) : n — UPX, with the forgetful functor U : BA — Set
being right adjoint of F'. E| Of course, in concrete examples one is often able to
obtain much more succinct presentations:

Proposition 2.5. With T' = P, the functor L defined by (@ is isomorphic to
the functor L of Ezample[2.1]

Proof. We need to find a natural isomorphism 7 : L — L such that 7P = 0.
Since dx is an isomorphism on finite X and T = P preserves finiteness, the
transpose 6a: LA — PT°PSA is an isomorphism on finite A. This induces an
isomorphism 7Fn : LF'n — PT°PSFn = LFn. Since L is defined by a presen-
tation, we know from [24] that L is determined by its restriction to free finitely
generated Boolean algebras. Hence 7 extends to the required isomorphism.

VIII. Positive coalgebraic logic. 1t is evident that, at least for some of the
developments above, not only the functor T', but also the categories Set and BA
can be considered parameters. Accordingly, one expects that positive coalgebraic
logic takes place over the category DL of (bounded) distributive lattices which
in turn, is part of an adjunction P’ : Pos®? — DL, taking upsets, and S’ :
DL — Pos®?, taking prime filters, or, in other words, P’X = Pos(X,2) and
S’A = DL(A, 2) where 2 is, as before, the two-chain (possibly considered as a
distributive lattice). Consequently, the ‘natural semantics’ of positive logics is
‘ordered Kripke frames’. That is, we may define a logic for T’-coalgebras, with
T’ : Pos — Pos, to be given by a natural transformation

§:L'P — PT? (8)

where L’ is a functor required to be determined by finitely generated free dis-
tributive lattices and &’ is given by its transpose in the same way as @

Ezample 2.6. Let T” be the convex powerset functor P’ and L’ : DL — DL be the
functor mapping a distributive lattice A to the distributive lattice L' A generated
by Oa and Qa for all @ € A, and quotiented by the relations stipulating that O
preserves finite meets, { preserves finite joins, and

Oa A Qb < O(a Ab) O(aVvb) < OaVvDb (9)
The natural transformation 0% : L'P'X — P'P’'°’ X is defined by, for a € P'X,
Oar {bePX |bna#0}, (10)

the clause for (a being the same as in .
4 Since elements in PTSFn are in one-to-one correspondence with natural transfor-
mations Set(—,2") — Set(T—,2), also knwon as predicate liftings [32], we see that
the logic L coincides with the logic of all predicate liftings of [34], with the difference

that L also incorporates axioms. The axioms are important to us as otherwise the
natural transformation 8 mentioned in the introduction might not exist.
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Remark 2.7. Alg(L’) is the category of positive modal algebras of Dunn [I1] and
we will show that it is isomorphic to Alg(L’) in Corollary Again we have
that for finite X, % is an isomorphism, a representation first stated in [14I15],
the connection with modal logic being given by [36J33/1] and investigated from
a coalgebraic point of view in [31].

3 On Pos and Pos-enriched categories

1. The category Pos of posets and monotone maps. Pos is complete and co-
complete (even locally finitely presentable [4]), limits being computed as in Set,
while for colimits one has to quotient the corresponding colimits obtained in the
category of preordered sets and monotone maps (however, directed colimits are
computed as in Set, see [4]).

Pos is also cartesian closed, with the internal hom [X, Y] being the poset of
monotone maps from X to Y, ordered pointwise.

This paper will consider categories enriched in Pos because this automati-
cally takes care of the algebraic operations being monotone. Therefore when we
say category, functor, natural transformation in what follows, we always mean
the enriched concept. When we want to deal with non-enriched concepts, we al-
ways call them ordinary. Thus, for example, the category Pos has its underlying
ordinary category Pos,. Everything below with the subscript o is the underly-
ing ordinary thing of the Pos-enriched thing. In particular, we consider Set as
discretely enriched over Pos. Then D : Set — Pos, the discrete functor, is triv-
ially Pos-enriched. There are two more Pos-categories appearing in this paper,
namely BA and DL. The first one is considered discretely enriched, while in DL
the enrichment is a consequence of the natural order induced by operations.

Notice that Pos is actually locally finitely presentable as a symmetric monoidal
closed category ([19]), as the ordinary category Pos, is locally finitely pre-
sentable, the one-element poset is a finitely presentable object of Pos,, and the
product X X Y is a finitely presentable object in Pos,, whenever both X and
Y are. All three Pos-categories mentioned above are locally finitely presentable,
the finitely presentable objects being the finite ones.

II.  Sifted weights and sifted (co)limits. In order to properly describe Pos-
functors and their logics by presentations and axioms, we shall need a detour
into the world of ordered varieties. We shall be brief and refer to [27], [9], [29],
[20] for more details.

A weight W : J? — Pos is called sifted if II,, : [n,Pos] — Pos preserves
all W-weighted colimits, where II,, is the functor taking the product of an n-
tuple of posets, for every finite discrete poset n. A sifted colimit is a colimit
weighted by a sifted weight. Examples of sifted colimits are filtered colimits and
reflexive coequalizers. There is one more important example to mention, called
codescent object of reflexive coherence datum, an enriched analogue of a reflexive
coequalizer ([9)28]). In particular, any poset p can be canonically expressed as
such a colimit (in the same way an internal category can be specified by its
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object of objects, its object of arrows and object of composable pairs with the
corresponding morphisms between them).

Codescent objects in can be obtained by means of coinserters and coequifiers
([28]); but as the latter are trivial in Pos and Pos-categories, constructing code-
scent objects reduces to coinserters. Similar considerations apply for the dual
limit notion which arises simply as an inserter in Pos.

III.  Functors preserving sifted colimits and their equational presentation. De-
note by Set; the category of finite sets and maps and by ¢ the composite

Set; — Set 2. Pos. Then Pos is the free cocompletion of Sety under (enriched)
sifted colimits. Equivalently, it is the free cocompletion of Sety under filtered
colimits and codescent objects of reflexive coherence data [27].

A functor 7 : Pos — Pos is called strongly finitary if one of the three equiva-
lent conditions below holds: (i) 7 is isomorphic to the left Kan extension along
¢ of its restriction, that is 7 = Lan,(7¢); (ii) 7 preserves filtered colimits and
codescent objects of reflexive coherence data; (iii) 7 preserves sifted colimits.

Recall there are monadic (enriched) adjunctions F 4 U : BA — Set, F’ 4
U’ : DL — Pos, where U and U’ are the corresponding forgetful functors. We
denote by J : BAy — BA and J’' : DLy — DL the inclusion functors of the full
subcategories spanned by the algebras which are free on finite (discrete po)sets.

Lemma 3.1. J and J' ezhibit BA, respectively DL, as the free cocompletions
under sifted colimits of BAg and DLy . In particular, these functors are dense.

Proof. We know that the ordinary functor J, : (BAg), — BA, exhibits BA, as
a free cocompletion under ordinary sifted colimits. Now the result for J follows
by noticing that codescent objects of reflexive coherence data are computed as
reflexive coequalizers.

For distributive lattices, the result is an instance of Theorem 6.10 of [27],
since DL is a finitary variety of ordered algebras (thus, DL is isomorphic to the
category of algebras for a strongly finitary monad on Pos).

Corollary 3.2. A functor L : BA — BA has the form Lang(LJ) iff it preserves
(ordinary) sifted colimits. A functor L' : DL — DL has the form Lang (L'J’) iff
it preserves sifted colimits.

Theorem 3.3. Suppose L : BA — BA and L’ : DL — DL preserve sifted colim-
its. Then they both have an equational presentation.

Remark 8.4. If we denote by |Set| the skeleton of the category of finite sets,
then [|Sety|, Pos] can be seen as the category of strongly finitary signatures. The
(proof of the) above theorem shows that every functor L' : DLy — DL (i.e., every
L’ preserving sifted colimits) has a presentation in the form of a coequalizer

H —=H,—— L
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for some strongly finitary signatures I" and Y. Here, ﬁ; is defined as follows:
given X : |Sety| — Pos, Hx : Set; — Pos is the polynomial strongly finitary
functor

Hyn = HSetf(k,n) o Xk
k

and it extends to a strongly finitary Hy : Pos — Pos by sifted colimits.
The resulting Hx : DLy — DL is given, at a free distributive lattice of the
form F'Dn, by -
Hx(F'Dn) = F'HxU'(F'Dn)
(see Remark 3.16 of [26]) and, again, it is extended to an endofunctor on DL by

means of sifted colimits.

We define a functor DL — DL to have a presentation by monotone operations
and equations if it has a presentation by operations and equations in the sense
of [24], such that, moreover, all operations are monotone.

Corollary 3.5. A functor L' : DL — DL has a presentation by monotone oper-
ations and equations if and only if L' is the Pos-enriched left Kan extension of
its restriction to finitely generated free distributive lattices.

As in Proposition we now obtain that

Corollary 3.6. If T’ is the the convexr powerset functor, then the functor L'
of Example is isomorphic to the sifted-colimits preserving functor L' whose
restriction to DLy is P'T'°?S" as in (§).

1V. The Pos-extension of a Set-functor. In order to relate Set and Pos-functors,
we recall from [6] the following

Definition 3.7. Let T be an endofunctor on Set. A Pos-endofunctor T is said
to be a Pos-extension of T if it is locally monotone and if the square

T/
Pos —— Pos

D] o TD (11)

Set T> Set

commutes up to an isomorphism o« : DT — T'D.
A Pos-extension T’ is called the posetification of T if the above square exi-
hibits T' as Lanp DT (in the Pos-enriched sense), having « as its unit.

If T is finitary, then its posetification does exist. This can be seen by express-
ing Lanp(DT) as a coend

SeSet
Lanp(DT)X = / (DS, X] e DTS (12)
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and taking into account that T is determined by its action on finite sets: explic-
itly, the coend becomes

neESet
Lanp(DT)X = / [Dn, X] e DTn (13)

which in turn is the following Pos-coequalizer

[1 Set(m,n) x Tm x [Dn, X]=% [[ Tn x [Dn, X]—Lanp(DT)X  (14)

m,n<w n<w

Example 8.8. 1. Let T'= Id on Set. Then the discrete connected components
functor and the upper-sets-functor are both extensions of T, while
Id : Pos — Pos is the posetification (recall that the discrete functor D is
dense, see [10]).

2. If we take T' = P; to be the (finite) power-set functor, then its posetification
is the (finitely generated) convex power-set functor, with the Egli-Milner
order ([266]).

Posetifications of (finitary) Set-functors are immediate examples of strongly
finitary Pos-functors. Briefly, one can say that a Pos-functor is a posetification
if it has a presentation by monotone operations and discrete arities. In fact, we
can be much more precise: a functor 77 : Pos — Pos is the posetification of a
finitary Set-functor if it is strongly finitary and preserves discrete sets.

V. Morphisms of logical connections. We recall the (enriched) logical connec-
tions (dual adjunctions, see [25]) between sets and Boolean algebras, and between
posets and distributive lattices. Both should be seen as Pos-enriched, where for
the first logical connection the enrichment is discrete. They are related as follows:

s
Set” T 1 3BA
P
D" w (15)
5
Pos? 1 5DL
I

In the top row of the above diagram, recall again that P is the contravariant
powerset functor, while S maps a Boolean algebra to its set of ultrafilters. The
bottom row has P’ mapping a poset to the distributive lattice of its upper-sets,
and S’ associating to each distributive lattice the poset of its prime filters. About
the pair of functors connecting the two logical connections: D was introduced
earlier as the discrete functor, while W' is the functor associating to each Boolean
algebra its underlying distributive lattice.

It is easy to see that the pair (D°P, W) is a morphism of adjunctions in the
sense of [30]. This means that the equalities

P'D? = WP, DS=SW, D% =D (16)
hold, where € and €' are the counits of S 1 P and S’ - P’, respectively.
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4 Positive coalgebraic logic

Consider T a Set-endofunctor and 7" an extension of T' to Pos as in . Logics
for the pair (T,T") are given by functors L : BA — BA and L' : DL — DL and
natural transformations

6:LP — PT°P §':L'P — P'T'?

assigning to syntax as given by presentations of L and L’ the corresponding se-
mantics in subsets or upper sets. To compare L and L’ we need the isomorphism
a : DT — T'D saying that T’ extends T, and also the relation WP = P’'D
from (which formalizes the trivial observation that taking upsets of a dis-
crete set is the same as taking all subsets). Referring back to the introduction,
we now make the following

Definition 4.1. We say that a logic (L',d") for T’ is a positive fragment of
the logic (L, ) for T, if there is a natural transformation B : L'W — WL with
WdoBP = Pa od D, or, in diagrams

Set”” —— BA —Y DL Set” 2 Pos? DL
T“fl S8 Ll /B JL' = T"”J /a"pT””“J s JL’ (17)
Set” —— BA —-— DL Set® — 57 Pos® — = DL

We call (L', 6") the (maximal) positive fragment of (L, 0) if 8 is an isomorphism.

Recall that we defined the logics L,L’ induced by T and an extension T’
as L = PTS and L' = P'T’'°?S’ on finitely generated free objects. Our desired
result is to prove that a certain canonically given 8 : L'W — WL is an iso-
morphism. The difficulty, as well as the need for the proviso that T preserves
weak pullbacks, stems from the fact that in DL (as opposed to BA) the class of
functors determined on finitely generated free algebras is strictly smaller than
the class of functors determined on finitely presentable (=finite) algebras. As
stepping stones, therefore, we first investigate what happens in the cases where
the functors L, L’ are determined on all algebras and on finitely presentable al-
gebras, before we turn the situation of functors determined on strongly finitely
presentable (=finitely generated free algebras).

I.  The case of L' = P'"T'°?S" on all algebras. We shall associate to any exten-
sion @ : DT — T'D the pairs (L, ) and (L', ") corresponding to T and T” re-
spectively, with L = PT°PS and § = PT°Pe: PT°?SP — PT°? [/ = P'T'°?§’
and ¢’ being defined analogously. Now the following is a consequence of (D°P, W)
being a morphism of adjunctions (see ) We then immediately obtain an iso-
morphism f:
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Proposition 4.2. Given an extension o : DT — T'D, the isomorphism

L

- o Y

BA —2 Set® — Set? —X—5 BA

Wl anl /anp lDop lW

DL T> Pos®? Pos®? DL

7P P
J

L'

exhibits L' = P'T'°?S" as the mazximal positive fragment of L = PT°PS.

II.  The case of L' = P'T'°PS’ on finitely presentable algebras. A similar result
holds if we define logics via PT°PSA for finitely presentable A, as we are going
to show now. To this end, we use the subscript (—); to denote the restriction
to ﬁnit(ﬂ objects as e. g. when writing the dense inclusions I : Sety — Set,
I' : Posy — Pos, J : BAy — BA and J' : DLy — DL. Note that we have the
following commuting diagram

(DF.we) ,
SpAPf ————— 5, 4P} (18)

(IOP,J)l J(I’””J’)

—>I /
SAP— g S AP

in the category of transformations of adjoints.
Define (L,6) for T as L = Lany(LJ) and § = LP Lrp L PT°P  with

v : L =Lany(LJ) — L induced by the the left Kan extension. By construction,
L is finitary and is given by PT°PS on finite(ly presentable) Boolean algebras.
Similarly, obtain (L, d") for T".

Since W is left adjointﬂ Lany(LJ) is preserved by W. Thus, to define an
(iso)morphism 3 : L'W = Lany(L'J YW — WL = Lan;(LJ)W, it suffices
to take the restriction along J of the isomorphism of Proposition [£.2] namely
By L'JW; =PTPS'"JW; 2 WPTPSJ =WL.

Proposition 4.3. The isomorphism (3 exhibits (L,0) as the mazimal positive
fragment of (L, 9).

Remark 4.4. Note that the above proposition does still not give us the desired
result, as L’ is not necessarily uniquely determined by its action on finitely

5 As Pos is locally finitely presentable as closed category, and ordinary categories
Set,, DL,, BA, are also locally finitely presentable, it follows that the finitely pre-
sentable objects in all the above categories are precisely the same as in the ordinary
case, i.e. the ones for which the underlying set is finite.

5 The (enriched) right adjoint of W sends a distributive lattice A to the Boolean
algebra of complemented elements in A (also known as the center of A).
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generated free algebras and, therefore, need not give rise to a variety of modal
algebrasm

III.  The case of L' = L' = P'T'°PS’ on finitely generated algebras.

Definition 4.5. Let T’ be a Pos-endofunctor. We define strongly finitary logic
for T' to be the pair (L', 8"), where:

— L’ : DL — DL is a Pos-functor preserving sifted colimits, whose restriction
to free finitely genmerated distributive lattices is L'Y = P'T'°?S'Y. More
precisely, L' = Lang/ (L'Y").

— & :L'P' — P'T'? is the composite 8 = P'T'°Pe’ - ~'P', where v/ : L' =
Lany/ (L'Y') — L’ is the natural transformation corresponding to the Kan
extension.

Remark 4.6. By the above definition, L’ preserves sifted colimits. Thus it has
an equational presentation; this is precisely what we required for logic functors.

Theorem 4.7. Let T' be a Set-endofunctor and T" a Pos-extension of T' which
preserves coreflexive inserters. Then (L',d") and (L', &) coincide. In particular,
it follows that L' is the maximal positive fragment of L.

Remark 4.8. The isomorphism (L, §) = (L, §) of the corresponding Boolean logic
for Set-functors was established in [24]. (Recall that L was introduced in (),
while L appeared in Paragraph [I[I.| above.)

Proposition 4.9 ([6]). Let T be any finitary Set-functor and T' its posetifica-
tion. Then T preserves weak pullbacks if and only if T' preserves exact squares.

Proposition 4.10. If T" is a Pos-endofunctor (thus locally monotone) which
preserves exact squares, then it preserves embeddings and coreflexive inserters.

The reader should think of an exact square as being the Pos-enriched analogue
of a weak pullback (see [I3], [5] or [6] for the precise definition).
As a consequence of all the results of this section, we obtain

Theorem 4.11. Let T : Set — Set be a finitary weak-pullback preserving functor
and T' : Pos — Pos its posetification. Let (L,8) and (L', 8') be the associated
logics of T and T', respectively. Then (L',8") is the mazimal positive fragment

of (L, ).

Example 4.12. For T = Id, the corresponding finitary logics is L = Id on BA,
with trivial semantics § : LP — PT°". It allows the extension 7" = DC,
the discrete connected components functor. Notice that 77 does not preserve
embeddings, neither coreflexive inserters. The corresponding logic L/ is given by
the constant functor to the distributive lattice 2. Thus 8 : L'IW — WL fails to
be an isomorphism (it is just the unique morphism from the initial object).

" However, this does hold for L, see [24].
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Our introductory example of positive modal logic is now regained as an in-
stance of this theoremﬂ It can also easily be adapted to Kripke polynomial
functors. More interesting is the case of the probability distribution functor. We
know from the theorem above that it has a maximal positive fragment, but an
explicit description still needs to be worked out.

5 Monotone predicate liftings

In this section we show that the logic of the posetification T” of T coincides with
the logic of all monotone predicate liftings of T

Recall that a predicate lifting [32I34] of arity n for T is an ordinary natural
transformation © : Set,(—,2") — Set,(T—, 2)E| or, using the ordinary adjunc-
tion D, 4V : Pos, — Set, an ordinary natural transformation

Q : Pos,(Dy—, [, 2]) — Pos,(D,T—,2)
It is called monotone if it lifts to a natural transformation
O : Pos(D—, [Dn,2]) — Pos(DT—,2)

By identifying a predicate lifting with an map © : T(2") — 2, the above says
that © is monotone if for all a; < a3 : D, X — [D,n, 2], we have that © o Ta; <
Qo Tay, where f: D,X — Y denotes the adjoint transpose of f: X — VY.

Consider now a Pos-functor 7" (locally monotone!) and a finite poset p. By
mimicking the above, we define a predicate lifting for T of arity p as being a
natural transformation™]

Q : Pos(—, [p,2]) — Pos(T'—,2)

Proposition 5.1. Let T be a Set-functor and T' : Pos — Pos an extension.
Then:

1. There is an injection from the set of predicate liftings of T' of arity p into
the set of monotone predicate liftings of T of arity Vp.
In particular, the set of predicate liftings of T’ of discrete arity n embeds
into the monotone predicate liftings of T .

2. In case T' is the posetification of T, the above mapping is a bijection.

As a corollary, we obtain

8 A minor issue here is that modal logic usually takes as semantics coalgebras for the
(non-finitary) powerset, whereas for the posetification to exist we sofar assumed T'
to be finitary. There are two solutions to this. One is to note that going from T
to its finitary coreflection T}, and then to its posetification 7, does not change the
functors L, L’ on the algebraic side. The second is to prove that the posetification
exists despite the functor not being accessible.

9 Equivalently, it can be described as an element O € Set(7(2"), 2).

0 Which can be identified with Q € Pos(T"([p, 2]), 2).
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Corollary 5.2. Let T be a finitary Set-functor. If the posetification T’ of T
preserves embeddings, then the logic of all monotone predicate liftings of T is
expressive.

Proof. The final T’-coalgebra and the final T-coalgebra coincide ([6]). If 7" pre-
serves embeddings and is finitary, then the logic of all predicate liftings of finite
discrete arity of T” is expressive for the final T"-coalgebra ([I7]) and therefore
also for the final T-coalgebra. By the above proposition, all monotone predicate
liftings are also expressive for T-coalgebras.

Remark 5.3. We know from [6] that if T preserves weak pullbacks then 7" pre-
serves embeddings. So the above theorem applies to weak-pullback preserving
functors. This result was obtained in [23] Cor 6.9] already in a different way.
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A Proof of Thm. 3.3

For L it is well-known. For L', proceed as follows:

1. Observe that [F}, U] : [DLg,DL] — [Setp,, Pos|, sending a functor L' :
DLy — DL to the composite U’L’FJQ, is of descent type. This follows im-
mediately from Lemma 3.14 in [26]. Above, F; : Set; — DLy is the domain-
codomain restriction of F'D : Set — Pos — DL.

2. The functor [E, —] : [Sety, Pos| — [|Set[|, Pos|, where |Sety| is the skeleton of
the category of finite sets and E : |Sety| — Set; is the inclusion, is monadic.
(Again, this follows from Lemma 3.14 of [20]).

3. The composite

[F7.U] (E,~]
[DLg, DL] ——— [Set s, Pos] ———— [|Set |, Pos]

is of descent type. This follows from Theorem 3.18 of [26].

B Proof of Prop.

The easiest way to prove this is to show that 3y, defined by the above, fulfills

" Pos;p ) Pos®?
Set;p DLy Set;p T'orr'r - DLy
TP [P BA, L'y T TPI* Pos®? L'y
LopIo? 18y D &
Set? LJ DL Set? DL
S S
BA BA
(19)
But this follows from Proposition and . ad

C Proof of Thm. [4.7]

Proof. In order to show (L/,8") = (L',8’), it is enough to check that L’ and
L’ agree on finite distributive lattices, as both are finitary. That is, we need
to show that L’ is P'T’'°PS’ on any finite distributive lattice, not just on the
free lattices with finitely many discrete generators. In particular, this will also
indicate 6’ = §'.



Positive Fragments of Coalgebraic Logics 17

(1) Using that the free-distributive lattice monad U’'F’ : Pos — Pos is
strongly finitary, one can exhibit every (finite) distributive lattice as a coinserter
of free (finite) onesE

Namely, take A to be a finite distributive lattice and consider the counit
ea: F'U'A — A in DL. Tt is an so-morphism ([27]), hence a coinserter of some
pair A = F'U’A (by factoring the pair through its image, we can assume
without loss of generality that A’ is finite). Now post-compose this pair with
ea : F'U'A" — A’ to obtain F'U'A’ = F'U’ A.

Again, since € 4/ is an so-morphism, it is a coinserter. Hence F'U'A’ = F'U’ A
and A’ = F'U’A have the same ”coinserter cocones”. This exhibits A as the
coinserter of F'U'A’ = F'U’ A.

(2) We need to check that L’ and L’ agree on all free distributive lattices on
finite posets.

Given a finite poset p, exhibit it as a coinserter of its reflexive coherence
datum

dg
D1 S Do D (20)
di

where pg is the discrete poset of elements of p and p; is the (discrete po)set of
ordered pairs in p. Apply now L'F’; we get

L'F'py =——— L'F'pg——— L'F'p (21)

PIT/op [Pl; 2] PIT/op [PO» 2]

The above diagram is colimiting, as F” is left adjoint and L’ preserves sifted col-
imits by definition. We just need to show that the colimit is in fact P'T'°P S'F'p =
P'T'°P[p, 2]. First, use that S’ is a left adjoint to move the diagram and its
colimit from DL to Pos?.

Thus in Pos, we obtain [g,2] as the inserter of the pair [d},2], [d},2]. By
hypothesis, T” preserves it. Now apply Lemma and we are done. a

Lemma C.1. The contravariant functor P’ maps coreflerive inserters in Pos
to reflexive coinserters in DL.

Proof. Notice that U'P’ = [—,2] and that U’ is monadic, thus conservative,
and preserves sifted colimits (as DL is an ordered variety), in particular reflexive
coinserters. Thus it is enough to show that [—, 2] transforms coreflexive inserters
into (reflexive) coinserters.

Consider therefore a pair of two monotone maps (c,d) with common right

inverse 7 in Pos
C

—
X<—i—Y (22)
d

11 Intuitively, this means that in distributive lattices equations can be expressed by
(pairs of) inequations.
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and form the inserter of the above data: Ins = {x € X | cx < dx} and Ins % X is
the inclusion. In particular, the diagram below is an exact square (see Def. |C.2)):

e
Ins — X

XT>Y

By Lemma we obtain [d,2] o 3. = 3. o [e,2]. Here 3. denotes the left
adjoint of [e,2] (see Lemma [C.3). As both e and ¢ are embeddings (c being a
split mono), [e,2] o 3, = id and [¢, 2] 0 34 = id by Lemma[C.3]

Thus applying [—, 2] to the diagram augmented by Ins = X and 3., 3,,
it exhibits [E, 2] as the split coinserter of of [¢, 2], [d, 2]. Therefore [—, 2] maps
coreflexive inserters to (reflexive and split) coinserters. O

Definition C.2 ([13]). An ezact square in Pos is a diagram

P—=X (23)
|
Y ——Z
with fa < gB, such that
VeeX,yeY. f(z)<gly) =IpeP. x<alp)ABp) <y (24)

Lemma C.3. Lete: E — X be an embedding of posets. Then [e, 2] has a right
1muverse.

Proof. Any poset can be seen as a category enriched over 2, and any monotone
map e : (F,<) — (X, <) as an enriched functor. Pre-composition with e gives
a functor between posets [e,2] : [X,2] — [E, 2] which has a left (and a right)
adjoint, given by left (and right) Kan extensions. Explicitly, the left adjoint 3.
maps an upper set ¢ to the up-set closure of its image e(¢) 1.

Remark e is an embedding precisely when it is fully faithful, thus by [18],
Prop. 4.23 the unit of the adjunction (the natural transformation corresponding
to left Kan extensions) is an isomorphism. Translated into Pos-language, this
means equality, thus [e, 2] o 3. = id. O

Lemma C.4. The diagram exhibits an exact square iff the Beck-Chevalley
condition holds, namely [g,2] 03y =3, 0 [3,2]:

«,2
PL>X [P72}<¥[A72]

B / J'f = 3QJ laf
Z

Y= V.2« —- 2.2
9,

Proof. Tt follows easily by direct computation. ad
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D Proof of Prop. 4.10

As each embedding e : X — Y can be realized as an exact square

id
X —

X
y J
X —<=Yy

the first assertion follows immediately.
For the second one, consider

h

YN

E*E>X?§Y

a (coreflexive) inserter. In particular,

E—>X

L

g
X—Y
is an exact square, thus mapped by T” into an exact square

e Ly

T/EJ/ / J/T'f
T/

"X —TY

19

Let u : U — T'X be a monotone map such that 77 fou < T'gou. For each z € U,

there is thus w € T"E with u(z) = T'E(w). As T"e is a mono (embedding), such

an w is uniquely determined. Moreover, the assignment x — w is monotone, as if

x1 < xg, then T"e(wy) = u(z1) < u(ze) = T'e(ws), hence wy < wy. This covers

the 1-dimensional aspect of inserters. For the remaining, use one more time that

T’e is an embedding.

E Proof of Prop. 5.1

1. It follows from the Yoneda lemma and from the composition of the two

following monomorphisms:

O

Pos, (T5([p, 21), 2) — Seto(VI5([p, 21), V2) — Seto(ToV ([p, 21), V2) (25)

The first arrow above is monic by faithfulness of V. The second one is given
by pre-composition with the natural epimorphism 7 : T,V — VT, (the mate
of a: DT — T'D under the adjunction D, 4 V), thus is also injective.
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In case p = Dn is discrete, [p, 2] is a power in Pos,, and V preserves powers,
as it is a right adjoint. Hence V' ([p, 2]) = 2™ and the set on the right of equa-
tion is precisely Set,(T,(2P), 2), which by Yoneda lemma corresponds to
the set of natural transformations Set,(—,2") — Set,(T—,2). A predicate
lifting © € Pos, (T, ([p, 2]),2) is then sent to A = VQ o 1p 97 : T(2") — 2.
Let a : X — 2" = V([Dn,2]). Then AoTa = Qo T'(a) o ax (by chasing
diagrams) and the monotonicity of A follows now easily. Thus the predicate
liftings of T" of discrete arity are among the monotone predicate liftings for
T.

Recall that the posetification 7" is constructed as an enriched coend ([6]).
Specifically, for (X, <) any poset, T"(X, <) is the poset obtained by quotien-
ing the following Preord-coequalizer:

[ Set(m,n) x Tm x (X", <)== [[ Tn x (X", <)—"—(TX, <)

m,n<w A n<w

Here A\ and p are given by A(f,o0,2) = (T'f(0),z) and p(f,0,z) = (o, 2f),
for f:m —n,x:n — X and 0 € Tm. And 7n(o,z) = Tx(0). Let now
(X, <) to be the poset [Dn,2]. Then one can easily check that a predicate
lifting A : T'(2™) — 2 is monotone in the sense of the above definition if and
only if is monotone as a map (7(2"), <) — 2, thus it induces by quotiening
a T’-predicate lifting of discrete arity.

O
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