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Background

Modal logic

I atomic propositions

I Boolean operations
∨,∧,>,⊥,¬

I unary �

I axioms:

�(a ∧ b) = �a ∧�b, �> = >

Then ♦ ::= ¬�¬

Positive modal logic

I atomic propositions

I lattice operations
∨,∧,>,⊥

I unary �, ♦

I axioms:

�(a ∧ b) = �a ∧�b,�> = >
♦(a ∨ b) = ♦a ∨ ♦b,♦⊥ = ⊥
(⇒ modal operators are monotone)

�a ∧ ♦b ≤ ♦(a ∧ b)

�(a ∨ b) ≤ ♦a ∨�b
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Background

Modal logic is about Kripke frames (X ,R ⊆ X × X )

Equivalently, coalgebras for powerset functor P:

{
X → PX

x 7→ {y ∈ X | xRy}

More generally, replace P by any functor T : Set→ Set

Reasoning about T -coalgebras: coalgebraic modal logic

Goal of the talk: positive coalgebraic logic
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Plan - first part

I Abstract coalgebraic logic

I Poset-enriched category theory

I Strongly finitary logic for Set-functors

I Strongly finitary logics for Poset-functors
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Abstract coalgebraic logic

Context: Stone-type duality

Spaop ⊥
P

22 Alg
S

rr

Coalg(T )op Alg(L)


Setop

P

33⊥ BA
S

rr

Posetop

P′
33⊥ DL

S ′
qq

Coalgebraic modal logic, abstractly

Syntax L : Alg→ Alg functor

Semantics δ : LP → PT op natural
transformation

I P maps a set to the BA
of its subsets

I S maps a BA to the set
of its ultrafilters

I P ′ maps a poset to the
DL of its upsets.

I S ′ associates to any DL
the poset of prime filters.
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Poset-enriched category theory

I Poset-enriched category: hom-sets are ordered.
Examples: Set, BA (both with discrete order), Poset, DL (with order
induced by operations)

I Poset-enriched functor: locally monotone functors (those preserving
the order on the homsets).
Example: D : Set→ Poset the discrete functor
Non-example: V : Poset→ Set the forgetful functor

I Poset-natural transformation: monotone natural transformation

I Enriched adjunctions S a P, S ′ a P ′

I Monadic (enriched) adjunctions

F a U : BA→ Set F ′ a U ′ : DL→ Poset
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More on Poset-enriched category theory

Let J : BAff → BA and J′ : DLff → DL

be the inclusion functors of the full

subcategories spanned by the algebras

which are free on finite (discrete po)sets

Theorem
I BA and DL are free

cocompletions under sifted
colimits of BAff , resp. DLff

I L : BA→ BA is LanJ(LJ) iff it
preserves (ordinary) sifted colimits

I L′ : DL→ DL is LanJ′(L′J′) iff it
preserves sifted colimits

BAff
J // BA

BA

DLff
J′ // DL

Corollary: Both L and L′ preserving sifted colimits have presentations by

(monotone) operations and equations
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Strongly finitary coalgebraic logic for Set-functors

Context: standard duality of propositional logic

SetopT op
;;

P

22⊥ BA
S

rr
Lbb

I Minimal requirement: Alg(L) is a variety
This happens if L itself has a presentation by operations and equations

I That is, if L preserves sifted colimits, or equivalently, if L is
determined by its restriction to the finitely generated free BAs

I Define LFn ::= PT opSFn

Then ULFn = Set(T (2n), 2) the set of n-ary predicate liftings

I Semantics δ : LP → PT is then automatically obtained as the mate
of the morphism L→ PT opS under the adjunction S a P

I Good properties: expressiveness, completeness, ...
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Predicate liftings

Remember
Predicate liftings of arity n for a Set-functor T are natural transformations

♥ : Set(−, 2n)→ Set(T−, 2)

Equivalently by Yoneda lemma, elements of Set(T (2n), 2) = UPT opSFn

Definition
Predicate liftings for a Poset-functor T ′ (locally monotone!) of arity p,
where p is a finite poset, are Poset-natural transformation

♥ : Poset(−, [p,2])→ Poset(T ′−,2)

Equivalently (by the enriched Yoneda lemma), elements of the poset
[T ′([p,2]),2] = U ′P ′T ′opS ′F ′p

A. Balan, A. Kurz, J. Velebil Positive Fragments of Coalgebraic Logics CALCO2013 9 / 21



Poset-functors and their (strongly finitary) coalgebraic logic

T ′ : Poset→ Poset locally monotone functor

T ′-coalgebra States: partially ordered set X = (X ,≤)

Dynamics: monotone map X→ T ′X

Logical connection: Posetop ⊥
P′

22 DL
S ′

qq

Logic: (L′ : DL→ DL, δ′ : L′P ′ → P ′T ′op)

Syntax L′ ::= P ′T ′opS ′J′ on free finitely generated DLs on (discrete
po)sets (Dn-ary predicate liftings)

⇔ L′ ::= LanJ′(P ′T ′opS ′J′) on all DLs
⇔ L′ preserves sifted colimits

Semantics δ′ : L′P ′ → P ′T ′op is the adjoint transpose of L′ → P ′T ′opS ′

(which comes from the universal property of L′ as left Kan

extension)
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Plan - second part
Two logical connections...

Setop ⊥T op
;;

P

22 BA
S

rr
Lbb

How to relate them?

Posetop ⊥T ′op
99

P′

22 DL
S ′

qq
L′bb

Coalgebraic side Logical side
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The Poset-extension of a Set-functor T

Definition (B-Kurz, CALCO2011)

An extension of T is a locally monotone
functor T ′ : Poset→ Poset such that
DT ∼= T ′D.

Set

∼=D
��

T // Set

D
��

Poset
T ′
// Poset

An extension T ′ is called the posetification of T , if the above square
exhibits T ′ as LanDDT , the Poset-enriched left Kan extension of DT
along D.

Theorem (B-Kurz-Velebil’13)

For each Set-functor, the posetification exists.
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Examples

Kripke functors

T ::= Id | TX0 | T0 + T1 | T0 × T1 | TA

Posetifications are as expected:

I Posetification of IdSet is IdPoset

I Posetification of the constant functor at set X0 is the constant
functor at discrete poset (X0,=)

I Posetification of (co)product functor is again the (co)product, this
time in Poset

I Posetification of exponential functor TX = XA is again exponential in
Poset
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Examples (continued)

Motivating example: T = P, the (finite) power-set functor

Posetification is the (finitely generated) convex power-set functor, with the
Egli-Milner order.

Distribution functor DX = {d : X → [0, 1] |
∑

x∈X d(x) = 1}
Coalgebras: Markov chains
Posetification: D′(X ,≤) is DX , with order given by

d ≤ d ′ ⇔ ∃ω ∈ D(X × X ) .


ω(x , y) > 0⇒ x ≤ y∑

y∈X ω(x , y) = d(x)∑
x∈X ω(x , y) = d ′(y)

Multiset functor MX = {ϕ : X → N | supp(ϕ) <∞}
Coalgebras: multigraphs
Posetification: still to compute...
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Intermezzo on predicate liftings

nat. transf. ♥ : Set(−, 2n)→ Set(T−, 2)

D a V
nat. transf. ♥ : Poset(D−, [n,2])→ Poset(DT−,2)

♥ is monotone if it lifts to an enriched Poset-natural transformation.

Proposition

Let T be a Set-functor and T ′ : Poset→ Poset an extension. Then:

I The set of predicate liftings of T ′ of arity p (p finite poset), is
injectively mapped into the set of monotone predicate liftings of T
of arity Vp.

In particular, the set of predicate liftings of T ′ of discrete arity Dn
embeds into the monotone predicate liftings of T .

I If T ′ is the posetification of T , the above mapping is a bijection.

Back to the big picture
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Relating abstract coalgebraic logics

T : Set→ Set with logic (L, δ)

Extension T ′ : Poset→ Poset with DT
α→ T ′D and logic (L′, δ′)

Definition

(L′, δ′) is a positive fragment of (L, δ) if there is a natural transformation
β : L′W →WL appropriately commuting with δ and δ′

Setop P //

T op

��

BA
W //

L
��

↙δ

DL

L′

��

↙β =

Setop Dop
//

T op

��

Posetop P′
//

T ′op

��

↙αop

DL

L′

��

↙δ′

Setop

P
// BA

W
// DL Setop

Dop
// Posetop

P′
// DL

L′ is the (maximal) positive fragment of L if β is an isomorphism.
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Main result

Theorem
Consider the following:

I T : Set→ Set a functor

I T ′ : Poset→ Poset an extension of T

I (L, δ) and (L′, δ′) the strongly finitary logics of T and T ′

I T ′ preserves coreflexive inserters

Then L′ is the positive fragment of L.

In particular, the above holds if T preserves weak pullbacks, and T ′ is the
posetification of T .
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A non-example

I T = Id is the identity functor on Set

I L = Id on BA

I T ′ is the discrete connected components functor on Poset

It is an extension of T which does not preserve the coreflexive inserter
below:

c c1 c2

� � //
//

//

a b a b a b

I L′ is given by the constant functor to the distributive lattice 2

I Then L′W →WL fails to be an isomorphism...
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Now: the (motivating) example

I T = P (finite) powerset functor

Logics: LA is the BA generated by �a, for a ∈ A, wrt � preserving
finite meets.

Semantics: δX : LPX → PPX , �a 7→ {b ∈ PX | b ⊆ a}

I Posetification: (finitely generated) convex powerset functor

Logics: L′A is the DL generated by �a and ♦a, for all a ∈ A, wrt
� preserving finite meets, ♦ preserving finite joins, and

�a ∧ ♦b ≤ ♦(a ∧ b) �(a ∨ b) ≤ ♦a ∨�b

Semantics: δ′X : L′P ′X → P ′P ′X ,

{
�a 7→ {b ∈ PX | b ⊆ a}
♦a 7→ {b ∈ PX | b ∩ a 6= ∅}
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More examples for future study

T =M the (finite) multisets functor
Logic: LA is the BA generated by ♦na, for a ∈ A, wrt ♦n preserving finite
joins
Semantics: δX : LPX → PMopX , ♦na 7→ {ϕ ∈MX | card

x∈a
ϕ(x) ≥ n}, for

n ∈ N

T = D (finite) probability functor
Logic: LA is the BA generated by ♦qa, for a ∈ A, wtr ♦q preserving finite
joins
Semantics: δX : LPX → PDopX , ♦qa 7→ {d ∈ DX |

∑
x∈a

d(x) ≥ q} for

q ∈ Q ∩ [0, 1]

T = N neighbourhood functor.
Logic: LA is the BA generated by �a, for a ∈ A, no equations.
Semantics: δX : LPX → PN opX , �a 7→ {s ∈ NX | a ∈ s}
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Conclusions and future work

I We have a general theory giving positive coalgebraic logic for all
Set-functors in terms of predicate liftings, which works the best for
weak-pullback functors

I However, this construction uses highly non-trivial enriched category
theory. Could it be simplified?

I To do: represent modal algebras for coalgebraic Poset-logic as
coalgebras over Priestley spaces

I Also, to extend Dunn’s result to many-valued coalgebraic logic. That
is, replace 2 by a general quantale V and Poset with V − Cat

Thanks for your attention!
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