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A uniqueness theorem in anisotropic viscothermoelasticity

of integral type
I. LUCA (BUCHAREST)

THIs PAPER is concerned with a uniqueness theorem for the mixed problem within the framework
of a linearized theory of materials with memory predicting finite speeds of propagation.

W pracy zajeto si¢ twierdzeniem o jednoznacznosci rozwigzan dla probleméw mieszanych
zlinearyzowanej teorii materialow z pamigcia, prowadzacych do skonczonych predkosci pro-
pagacji zaburzen. :

B pabote sanumaroTcs Teopemoii 00 eHHCTBEHHOCTH DEIeHHI I CMEIIAHHbBIX 3a7a4 JIHHe-
apHU30BAHHON TEOPHH MATEPHAJIOB € NAMATEIO, IPHBOJAIIMX K KOHEYHBIM CKOPOCTAM pacnpo-
CTpaHeHHA BO3MYILEHHIT.

1. Introduction

A MATHEMATICAL theory which is able to account for memory effects and for propagation
of finite thermal discontinuities with finite speeds was proposed by GURTIN and PIPKIN
[1]. Their theory is confined to rigid materials. In [2] MCCARTHY removes this restriction
by formulating a theory of thermomechanical materials with the same essential features
as those from [1]. The linearized version of the constitutive equations considered in [2]
is given in [3].

There exist some investigations concerning uniqueness theorems for history-value
problems appropriate to the linearized theory from [1] see [4-7]. In this work we give
a uniqueness theorem concerning the anisotropic viscothermoelastic material defined in
[3] and occupying a bounded region in space. Its proof makes use of an argument given
by Edelstein and Gurtin [8] for a similar result in the case of anisotropic viscoelastic
solids. '

2. Notations

Statement of the mixed problem. Let D be a regular bounded region (in the sense
of KeLLoG [9]) of a three-dimensional Euclidean space E. Denote by D, éD and n its
closure, boundary and unit outward normal, respectively. D,, D, and D,, D, stand for
complementary subsets of dD i.e., ¢D = D,uD, = DguD,, D,nD, = DgnD, = . x is
a point of E and ¢ stands for time. The initial value f(x, 0) (or f(0)) of a function f(x, 1)
(or f(t)) is denoted by fo(x) (or fo).
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The constitutive equations of a visco-thermoelastic material of integral type are (see

3D

' T(x, t) = Go(X)E(x, 1)+ ;f G(x, 9 E(x, ¥—s)¢f—No(x) T(x, 1)
- f N(x, 5) T(x, t—s)ds+ of R(x, 5)g(x, t—s)ds,
Q1) eon(x, ) = No(x)- E(x, 1)+ f P(x, 5)- E(x, 1=5)ds+go(x) T(x, 1)
+ of &(x, ) T(x, t—s)ds‘+fr(x, s) - g(x, t—s)ds,
Flo—q(x, 1) = Jo()E(x, 1)+ f J(x, S)E(x, t—s)ds+ho(x) T(x, 1)

+ [ hix, ) T(x, 1—s)ds+ [ K(x, )g(x, 1—s)ds.
o o

Here T is the stress tensor, E = f?u, where u is the displacement and V is the symmetric
gradient, 7 — the specific entropy, q— the heat flux, o,, 6, — the uniform(*) density
and absolute temperature, respectively, in the reference configuration, 7" = 6—0, — the
temperature difference, g — the temperature gradient and tr — the trace operator. The
constitutive functions appearing in Eq. (2.1) are defined on Dx [0, ) and have the
following values: G(x, s) is a fourth-order tensor, N(x, s), P(x, s) are symmetric tensors
of order 2, Ko(x, s) is a tensor of order 2, R(x, s), J(x, s) are third-order tensors, r(x, s),
h(x, 5) are vectors and g(x, s) is the scalar. The superposed dot stands for time differentia-
tion. In [3] it is shown that the Clausius~Duhem inequality implies

(a) Gy(x) symmetric,

®)  No(x) = Po(x),

(¢) K(x) symmetric and negative semi-definite.
Other symmetry properties have been proved using additional assumptions, logically
independent of the entropy inequality. Thus it is found that the heat-work done on every
closed path starting from the virgin state is invariant under time reversal if and only if
G(x, 5) is symmetric,
N(x, s) = P(x, s),
R(x, 5) = J7(x, 5)+constant,
r(x, s) = —h(x, s)+constant, for every (x,s) € Dx [0, o0).

(2.2}

In thé theorem some of these properties are used.
The balance equations which are to be satisfied on D x (—o0, o0) are

2.3) 0ol = divI+00b, 0000 = —divg+gor,

(*) In fact go may depend upon x.
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where b is the body force and r is the heat supply. Suppose that
(@) bx,1)=0, r(x,f)=0 on Dx(—00,0);
(i) b(x,t) and r(x,¢) are of class ¥ on Dx(—o0, ®0);
(@) -G(x, ),  Nx:s)., RBX,s) P a=s) rEY,. Ix9)
h(x,s), K(x,s)
are of class 2 on Dx [0, o).
By a solution to the mixed problem we mean a pair (u, 7) having the properties:
" (iv) u is thrice continuously differentiable, while T is twice continuously differentiable
on Dx (-0, );
(v) (u, T) satisfies the field equations (2.3) and the constitutive equations (2.1) on
Dx(—o0, 00);
(vi) (u, T) satisfies the initial conditions
(2.4 u(x,1) =0, T(x,1)=0 on Dx(—o0,0];
(vii) on 9D the following boundary conditions are to be satisfied:
u(x, ) = u(x,t) on &D,x|0, c0),
T(x, )n(x) = t(x, 1) = t(x,#) on 8D, x [0, ),
23) T(x,t) = T(x,7) on aDyx [0, ),
q(x, ) 'n(x) = §4(x,1) on &D,x[0, o).

In view of the initial conditions (2.4), the constitutive equations (2.1) become

T(x, 1) = [ Glx, t—9)E(x, s)ds— [ N(x, 1—3) T(x, s)ds+ [ R(x, 1—5)g(x, s)ds,
0 0 0

26)  oon(x, 1) = [P(x,1—s)- E(x,)ds+ [ g(x, 1—5) T(x, s)ds+ [ r(x,1—5)-g(x, 5)ds,
0 0 0

gl—q(x, t)= fJ(x,t—s)iE(x,s)ds+ fh(x,r—x)f‘(x,s)ds+ fk(x, t—s)g(x,s)ds.
2 0 0 0

3. Uniqueness theorem
The proof of the theorem uses the following lemma.
LemmA 3.1. Let (u, T) be a solution to the mixed problem corresponding to null data.
Then
Gn 0= %f{goii(x, ) ii(x, ) +E(x, 1) - Go@E(x, 1)+80() T2(x, 1)
D

—g(x, 1) - Ko(x)g(x, 1)} dx
+ ff {[—Go(X)E(x, 7)+No(x) 7(x, 1)~ Ro(X)g(x, 7] E(x, 7)
Db :
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(3.1) + [Po(x) - E(x, 7)+20(X) T(x, 1)+ Fo(X) - g(x, D] T(x, 7)
[const.]
+ [Jo(ME(X, 7)+ho(x) T(x, 7)+Ko(x)g(x, 7)] - g(x, 7)}drdx

+ ff {[C(x, t—‘.':)E(x, 7)—N(x, 1— 1) T(x, ) +R(x, - 1)g(x, 7)) E(x, t)
D0 3
+[-Jd(x, 1— DEX, D—h(x, 1—7) ;'v(g, - K(x, 1—1)g(x, 7)] - g(x, 1) }drdx

+ j {F’:(x, ) ReG)g(x, )~ f (Ro) +JE(®) &(x. 7) - E(x, 1)dv
- f (ro(x)—ho(x)) - &(x, 7) T(x, t}d‘-‘.’} dx

+f ff{{—é(x,r—s)li:(x,x)n\':(x, 7—5) T(x, 5)—R(x, 7—9)g(x, )] - E(x, 7)
Doo

+[P(x, 7—5) - E(x, 5)+ B(x, 7—35) T(x, 8)+¥(x, T—35) - g(x, )] T(x, 7)

+ B, T—9)E(X, s)+h(x, 7—5) T(x, 5) +K(x, 7—5)g(x, 5)]* g(x, 7)}dsdrdx.

Proof. Taking into account the null data, the divergence theorem, Fubini’s theorem -

and the balance equations (2.3), one arrives at

t t
Lip.= f f.t(x, 7) - (X, T)dxd1;+ffgoin(x, 7) - ii(x, 1)dxdr
0 ép 0 D

0

_.J‘a-!;ﬁ_lo. T(x, 7)4(x, T)'n(x)dth-i-bfﬂ.{_S% T(x, 1)i(x, 7)dxdr

o %goii(x, B Bix; )dx

4 23 ;)f i)r {T(X’ N E(x’ T)+90'ﬁ‘(xs 7) jn(xa T)— ‘B}; Hx; 1)~ g(x) T)} dxdr.

Integrating by parts and using the initial conditions (2.4), the foregoing relation becomes

l

(2 0= %ngoii(x, £y, z)dx+D“T'(x, f)- Ex, :)—7;[-‘- i(x, 1) gx. ) dx

— !!{—'f‘(x, 1) E(x, 1)+00%(x, ©) T(x, r)+.§1;. (x., 1) g(x, r)}dxdr.
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Substituting in Eq. (3.2) the constitutive relations (2.6) and using the symmetry properties
(a)-(c), after a long routine calculus one arrives at the theorem (3.1).

Now we give the uniqueness theorem.

THeOREM 3.1. If the following properties

Go(x) is positive definite,

go(x) > 0,
(3.3) Ky(x) is negative definite,
Ro(x) = J5(x) = 0,
To(x) = ho(®)

hold, then there is at the most one solution to the mixed problem.

Proof. Let (u,, 7)) and (u,, T,) be two solutions to the mixed problem. The unique-
ness is proved if we may show that (u, 7) =0 on Dx (-0, c0) where u = u, —u,, .
P=TF=T;;

From the relations (3.1) and (3.3), it follows that

G4 0= [ foditx, )i, D+E D) Go@ER, N +20(X) T2, 1)

D

—g(x. 1) Ko0)g(x, ) Jax
+ [ [ = Goitx, 0+ R s, D Rogtx, 1 Ex, 7
Do

+ [Po() - E(x, 1)+ £o(x) T(x, 7)+Fo(x) - g(x, DT(x, 7)
+ [JoME(x, 1)+ho(x) T(x, 1)+ Ko(X)g(x, )] g(x, 7)}drdx

+ j f {[G(x, - DE(x, 1)—N(x, t— ) T(x, 1)+ R(x, t— 1)g(x, 7)] - E(x, 1)
D O
+[=d(x, t—DEX, 1)~ h(x, 1—1) T(x, 1)—K(x, t—1)g(x, 7)) g(x, 1) }drdx
+fff{[-é(x, r—ls)iil(x,:s)-i-ﬁ(x,t—s)j’"(x,s)-ﬁ(x, ;ﬁs)g(x,s)l-t(x,é)
D 0 0

- [ﬁ(x, T—5)" i*](x,s)-i—jj(x, T—5) T(x, 5)+¥(x, ‘r-—s)'g(x,s)]f’(x, 7)

+ [J(x, T—)E(x, 5)+h(x, 7—5) T(x, 5) + K(x, 7—s)g(x, 5)] - g(x, 7) }dsdrdx.

Now identify the tensor-valued constitutive functions with their representative matrices
in a rectangular Cartesian frame as follows (see [8]): G(x, s) denotes a 6x 6 matrix,
N(x,s) —a 6 x 1 column vector, P(x, s)—a 1 x 6 line vector, R(x, 5) — a 6 x 3 matrix,
J(x, 5) — a 3 x 6 matrix, r(x, s) — a 1 x 3 line vector, h(x, 5) — a 3x 1 column vector and

K(x, s) — a 3 x 3 matrix. Also let 7 be the 3 x 3 identity matrix, ]/E.;u(x, t) and g(x, 1) —

g+
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3 x 1 column vectors and E(x, ) — a 6 x | column vector. Thus we may define the following
13 x 13 matrices:

e o T :igolof_o'ol'i
T gt ety ety L5 St =g = —p= = 5
0 G ' 0! 0 [ 01—Gy! No'—Ro]‘
Ba_"' __.I—‘IH-‘_“_I‘____, Bl= __I_.__I___ __|’
0' 0!g ! 0 o B, ' g ' by |
o, o e P e g el 24 ..-.——._..———_—.-.]
0,0 °0T-X; i O B N
o',o.'olofli loi 0,0, 0
i s o e el i _li - =" T = Sl =  an |
01 61 =N R | 01 -G N1 -R
By = |- = ~l= - =1= - - =il Bs__‘__{___l___|___
00070 0 0B lg ¥
0,—-3, -h| -K - F K

Define also a 13x 1 column vector { through

Voot

E

2 s
T

In terms of these matrices the identity (3.4) takes the form

0= f X {)_Bo_éx)_ I(x, )dx+ f f ¢T(x, 1) B (x){(x, ©)dvdx
D Db

+ff¢f(x, D By(x, t— ) L(x, r)drdx+fffc"(x, DB,(x, v-HU(x, s)dsdrdx.
D0 DO o0 .

The continuity, the symmetry and the positive definiteness hypotheses of B,(x) enable
us to invoke Lemma 2 for [8]. Thus there exists a nonsingular matrix K(x) which is con-
tinuous on D and satisfies

K T(x) [% B.;,(x)] K- =T.
Set
Ex, 1) = Kx){(x, 1),
A(x, 1) =K Tx)B,/(x, 1)K~ *(x), i=1,2,3.

Since &(x, ) and A,(x, 1) are continuous on D x [0, c0) and because D is a bounded region,
we may apply Lemma 3 from [8]). Thus it results

E(x,1)=0 on Dx[0,00),



A UNIQUENESS THEOREM IN ANISOTROPIC VISCOTHERMOELASTICITY F 541

héncc
tx,t)=0 on DxJ[0, ).
This implies '
ii(x,1) =0, T(x,£)=0 on Dx][0, ).

Since u(x, f), u(x, ¢) and 7(x, 1) are continuous and because of the initial conditions (2.3),
one obtains the desired conclusion

ux,t)=0, Tx,7)=0 on ﬁx(—oo,oo).
Note that the conditions (3.3),—(3.3); become in the isotropic case
>0, po>0, ¢>0, x>0,

and make possible the propagation with finite velocities of the thermomechanical distur-
bances (see [10]). But the restrictions (3.3),, s have no theoretical or experimental grounds.
They are only sufficient to have a unique solution to the mixed problem. Also, if the heat-
work done every closed path starting from the virgin state is invariant under time-reversal,
then the assumptions (3.3),, s determine the constants from the conditions (2.2); 4. How-
ever, if the material is centrosymmetric or isotropic, then

R(x,5) =J(x,5) =0, r(x,5)=h(x,s)=0,

hence the conditions (3.3),,s are auiomatically satisfied.

It is worth mentioning that the thermoelastic material of the Cattaneo type for which
q(x, 0) = 0 is a particular kind of visco-thermoelastic material (see [11]). In view of the
null data required by the proof of the uniqueness theorem, it follows that for this particular
material the uniqueness problem is equivalent to that considered within the framework
of the theory of the Cattaneo type. Thus our Theorem 3.1 provides the uniqueness to the
mixed problem corresponding to the mentioned theory.
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