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NUMERICAL RESULTS FOR THE UNEDCVIENSIONAL
HEAT PROPAGATION IN A RICH) CONDUCTOR

OF INTEGRAL TYPE

by IOANALUCA*

By the Fourier method we find the formal solution of an initial and boundary value
problem concerning the unidimeasional heat propagation in a rigid conductor of
integral type. We show that under properly chosen initial data the formal solution
represents the solution in C\R*; L1 [0, /]) o C°(7?+; H) or in C\R*x [0, /]) of the
formulated problem. In the last case we give an estimation of the error arising in the
calculation of the solution.
Then we use the integro-interpolation method and construct a three-parameter
difference scheme for our problem. Its stability and order of approximation are searched.
For various initial data we give numerical results obtained by means of the Fourier
method and/or of the difference scheme.

1. INTRODUCTION. THE STATEMENT OF THE PROBLEM

In some papers [3], [5] - [7] it was shown, by various qualitative methods,
that the thermoviscoelastic material of integral type allows the propagation of
thermomechanical disturbances. Existence and uniqueness properties of the
solution to som» boundary initial value problems concerning this material were
established in [1], [2]. This paper contains a study based on the Fourier method
and on the finite differences method in order to obtain quantitative results in the
case of the unidimensional heat propagation in a rigid heat conductor, i.e. in the
case of the following constitutive equations (see [5]):

= c0T(x, t) + c(s) T(x, t -

T o dx

(1.1)

(1.2)

Here it is understood that the body is held in the reference configuration with
uniform temperature 90 for all times t < 0. 7 1 =6-6 0 denotes the temperature
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difference, e-the internal energy, q-the heat flux, t- the relaxation time and x-the
spatial coordinate. The constitutive functions c, K : [0, oo) = R + — > R of time variable s
have the properties (see [7] )

cx = lim c(s) > c0 = c(o) > 0, KO = *(0) > 0 ,

but they still remain too general in order to solve an initial and boundary value
problem. Therefore we choose them as follows:

W , (1-3)

where c^, CQ, KO are constants with the properties

c0>o,M = cjc0zi,K0>o. (1.4)
Devoid of external heat sources a rigid heat conductor must satisfy the

energy balance law

P.I + fj-0. (1.5)
at ox

where p0 is the mass density.
If we insert (1.1), (1.3), into (1.5) we obtain

ot

Further it can easily show that with the choice (1 .3)2 the constitutive equation (1 .2)
turns into the Cattaneo law of heat conduction

.
T etc T

with vanishing initial condition q(x, 0) = 0.
Now we can formulate our mixed problem P: Find the temperature

difference field T. [0, /] x I?-*R and the heat flux q: [0, /] x R^-^R which satisfy
(0 the equations (1 .6), (1 .7) on (0, 7) x (0, oo),
(n) the initial conditions

7-(jt,0) = ®(x), q(x,0) = 0, x e [O,/] (1.8)
and

(ZH) the boundary conditions

q(0,t) = q(l,t) = 0,teR\ (1.9)

,
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Let L2 [0, /] be the space of square Lebesgue mtegrable functions on [0, /]
and

H = LeL2[Oj]\u'eL2[Q,l]},

i.e. the space of absolutely continuous functions on [0, /] having the first
derivative in L2 [0, /].

If we invoke the result of existence and uniqueness contained in Theorem
4.1. of [1] we can state that

if 0 e H, then there exists a unique solution of the problem P in
C1 ;̂ L2 [0, 1] n C°(K", H).

Our aim in the next section is to find this solution by the Fourier method and
to give sufficient conditions on the function 0 in order to have a classical solution
i.e. in C1 (R* x [0, /]). The results are contained in Lemmas 2.1, 2.2. In Lemma 2.3
we give an estimation of the error in computing the classical solution by means of
the series obtained by the Fourier method.

Section 3 is concerned with a three-parameter difference scheme for the
problem P. We show its stability and indicate the order of approximation. In
Section 4 we obtain numerical results for various initial data and we present them
graphically.

We note that in the case of a rigid heat conductor of Cattaneo type, i.e. M= 1 ,
the problem P was searched by Sotskii [9]. He used the Fourier method and
obtained the solution as formal series. He also proposed a three-parameter
difference scheme for which he proved the stability and established the order of
approximation. All results from [9] are contained in the present paper,
namely for M— 1.

2. THE FORMAL SOLUTION. THE CLASSICAL SOLUTION

In this section we use the Fourier method to solve the problem P. We look
for solutions of (1.6), (1.7), (1.8)2, (1.9) of the form

T(x,t) = T(X)f(t), q(X,t) = q(X)q(t). (2.i)

The insertion of (2.1) into (1.6), (1.7) delivers the existence of two constants
a, p, such that

q'=-Poc0af,f'=— §-q, (2.2)

=pf. (2.3)
T At

4
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Here the prime denotes the derivative with respect to the local coordinate x,
while the superposed dot denotes the derivative with respect to the time /. In view
of (1.81 and (1.9), <?(*) and q(t) have to satisfy

(2.4)

We must investigate four possible cases: (;') a = p = 0, (n) a = 0,
P * 0, (Hi) a * 0, p = 0, (iv) a, p # 0.

In the cases (/), (if) we easily obtain a solution T0 (x, t), q0 (x, t) of the
form (2.1) as

(2.5)

with a0 — constant.
in the case (Hi) we obtain the trivial solution T(x, t) = 0, q(x, f) = 0.
In the case (rv), from (2.2), (2.4), we get the problem of eigenvalues and

eigenfunctions

= 0,

with the nontrivial solutions

Poco

By (2.2) we can now calculate as

,

,11 = 1, 2,....

As usually, corresponding to each n = 1, 2, ... we think of solutions Tn (t), qn (/)
to the system (2.3), (2.4)2 in form of exponential functions. Because of the integral
term in (2.3)j we look for them of the form

with an, bn, cn, dn = constant, yfl ^ -1/T. Substituting (2.8) into (2.3) we get

(2.8)

(2.9)
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(2.10)

where ^r=K0/p0c0t is the velocity of thermal pulses (see [5]),

X = (M - l)/T2l/r and X = M2/4t2{7^ • T*16 inspection of (2.10) shows that

both conditions y \ * -1/t and Y» ^ -1/t are simultaneously satisfied if and only

if Xn * X . Moreover, Y +
n * 1 '„ if and only if Xn # X . Notethat X < X and X = X

if and only ifM= 2.
Suppose now that XM * X and XM * X. Since Y t * Y », Y* * - VT ,except

for some multiplicative constants we have two linearly independent solutions of

(2.3) of the form (2.8X2-10). Because of the linearity of the system (2.3), their

sum is also a solution. But we are interested in solutions which satisfy (2.4)2 and

so we obtain

(2.11)

In the case X.n ^ X , Xn = X , one of the two yn in (2.10) is equal to -lit,
while the other one is equal to -(M- l)/t ^ -1/t. Thus the solutions of the form
(2.8) are given by

Since qn (0) = 0 , these are the solutions of (2.3), (2.4)2.

I fX n = X and XM *X, then y* = y~ = -A//2t
solutions of (2.3) of the form

We obtain

- 1/t and we seek for

2-c

(2.12)

which evidently satisfy (2.4)
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Finally, if Xn = A, = A, we have y „' = Jn = -!/T and thus solutions of (2.3)
of the form (2.8) do not exist. This time we look for them as

and we find

These solutions satisfy (2.4)2 and, moreover, they can be simply obtained from
(2.12) by setting there M=2.

So if we agree to view the solution (2.5) as corresponding to n = 0, we may
state that^ fo£ each n = 0, 1, ... we have obtained a solution
£(***)• ?(*ftW 9n(x,t) = qn(x]qlt(t) of (1.6), (1.7), (1.8)2, (1.9).
Supposing 0(r) to be in L-[Q. /] \\ith all these solutions let us build up the series
Z^^n(x't)'Z^^n(x>t) in which the constants ay ar fk n = 1. 2.... are choosen so
n>0 n>0
as to have

(2.13)
n=0

inZ2[0,/J. In terms ofthe cosine Fourier coefficients ©,,, « = 0. 1, . . . of 0(x), we obtain

where

2M

®n I r> ri 2 - M e—- e • + e " +
2 ( M JA

r » ' e r " '

" 2t

(2.15)

if

if

if A = A,, n = 1,2,.
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and

where

n>\

(2.16)

tx-

~M

K0

2- M

if X

M-\

'-e"'|, if -kn * rxX-X, (2.17)

if X, = X, .

The series (2.14)-(2.17) are said to be tine formal solution of the problem P.

We learn more about it from the following two lemmas.

Lemma 2.1. If® e H, then the series (2.14}-{2.17) coverge to the solution

in C \R+; L2 [0, / ]) r» O>(R*; H) of the problem P.

Proof. To establish this it is sufficient to verify the following properties of

the formal solution.

(i) The series (2.14)-(2.17) converge uniformly in £2[0,/] with

respect to / on R+.

The series (2.14), (2.15) has the desired property if, for example, we show

that the series ^^?v) is uniformly convergent on R+. An elementary study of

Tn(t), n = 0, 1, ... delivers the following inequalities on R+:

(2.18)

where

if
if if X =

(2.19)

,4 =
M-2•D, (2.20)
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V-AIi
i f T, \ S S \ S. — _, T A- — A, < . . . < A H < . . . ,

A/-A2

maj i L_l tfx< <* cxo
[v^« v A»+i J

1 1 1
mnvJ V ifX <- <• ^ .. <- V. ' X ^

From(2.18)-(2.20)itfoUowsthat 7;2(/)< A2@l
n, n = 0,1,... and, therefori

the convergence of the series 2j®n implies the uniforme convergence of th
M>0

sees

Analogously we show that the series (2.16), (2.17) is uniformly converger

in L2[0, 7] with respect to / on R* by proving that the series / $„ (t) converge

uniformly on ^f". In the same way as for 7^(0, for qn(f) we obtain the followin
inequalities valid on R*.

M
2K

\2-
2KQ

(2.2i

ifX =X.

From (2.21) it follows that q2
n (t) < B2kn®

2
n, n = 1,2,..., where

B = M -M (2.22

Since 0 e //,

0n = -©„, n = 12, (2.23
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where ©„ are the sine Fourier coefficients of ©' on [0, /]. Hence the series } ' ^H®^
n^l

is convergent and, therefore, the series 9^(0 is uniformly convergent.

We conclude that the sums Tlfo 0, <?(*, 0 of the series (2.14), (2.15) and
(2.16), (2.17), respectively, belong to C°(R+; L2[0, /]).

(if) The series obtained by differentiation of (2. 14) -(2. 17) with respect to
t converge uniformly in L2 [0,1] on R*.

Differentiating the series (2. 14)-(2. 17) with respect to t, using the inequality

and the same technical details as in the proof of (i) we get the property (»'), which
implies that T(x, t), q(x, t) are in C^R*; L2 [0, /]).

(Hi) The series obtained by differentiation of (2.14)-(2.17) with respect to x
converge uniformly in L2 [0, /] on R* .

Differentiating the series (2.14)-(2.17) with respect to x and taking into
account the inequality

JLi<C, C = constant > 1,

valid for sufficiently large n, as in (i) we obtain the desired property (HI).
Consequently T (x, t), q (x, t) are in C° (F; H).

(iv) The sums of the series (2.14X2-17) satisfy the initial conditions (1.8)
and the boundaiy conditions (1.9).

This results obviously from (2.13X2.17).
(v) The sums of the series (2.14X2.17) verify the system (1.6), (1.7).
This is a direct consequence of the properties (i), (if), (in) and of the fact that

Tn(x, t), qn(x, t) represent a solution of the system (1.6), (1.7). This completes the
proof of Lemma 2.1.

Lemma 2.2 If® is an absolutely continuous function on [0, /], ®' e H and

©'(0) = ©'(/) = 0, (2.24)

then the series (2.14X2.17) converge to the classical solution of the problem P.
Proof. First we remark that via (1.7X1 -9) the relation (2.24) is a necessary

condition in order to have a solution in C'([0, /] x R*). Now we verify the
following two properties of the formal solution:

(i) The series (2.14X2-17) converge uniformly on [0, /] x R+.
As before in (i) of Lemma 2.1 we obtain

, n= l ,2
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By (2.23) we have

and, hence, the series _2-i ©« | is convergent. On the other hand, since 0' e H

in view of (2.24) we get
fi^®n = &„, n = 1,2,... (2

where ®"n are the cosine Fourier coefficients of©" on [0, /]. From (2.23), (2
we deduce that

Hence the series ̂  AT « r « *s a^so convergent- Consequently the se
nil

(2.14)-(2.17) are uniformly convergent on [0, /] x /?+ and, therefore, their

7& 0, 9ft 0 are in C°([0, /] x /P).
(») The series obtained by differentiation of (2.14)-{2.17) with respect

and x, respectively, converge uniformly on [0, /] x R+.
The proof is similar to that of the property (x). It follows that T(x, t), q(x, t]

in C! ([0, /] x /?") and, hence, they represent the classical solution of the problei
It the following we give an estimation of the error in computing the clas;

solution by means of the series (2.14)-(2.17). We recall that 0 is a piecei
monotone function on [0, /] if there exists the division 0 = a0 < al < ... < an

such that 0 is monotone on each (a., am). Let R*(x,t) and R%(x,t} the
remainders of the series (2.14), (2.15) and (2.16), (2.17), respectively.

Lemma 2.3. Under the requirements stated in Lemma 2.2, in which 0' sh
be considered as a piecewise monotone junction having a finite numbe
discontinuities of the first kind \ there hold the inequalities

where A, B are given by (2.20), (2.22) and

71 1=0
C = 0"a:. + 0 + 0"a,+1 - 0 . (2

1 Such a function is said to satisfy the Dirichlet conditions.
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Proof. From (2.23), (2.25) it follows

I "I ~ -\ I '
An

But the properties of®" imply (see [10], 151)

©" <- ,
n

where C is given by (2.27). Thus we obtain

Since

\Tn(X,t]<A\®n\,

(see the proof of Lemma 2.1), in view of (2.28) we deduce that

71
I - .
*=«+!

i
*=»+!

Now in (2.29) we use the inequalities

1 1 1 1 1

(2.28)

p.29)

and thus we arrive at the estimations (2.26).
For future use in Section 4 we give the expression of the internal energy e

corresponding to the classical solution of the problem P:

(2.30)
n=l

where

eM] =
jW ~~

©„ (M-

if

if

if (2.31)
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3 A THREE-PARAMETER DIFFERENCE SCHEME

The solution of the problem P in form of Fourier series was obtained, ir
fact, for very restrictive initial data, namely for some classes of absolutel)
continous temperature differences at / = 0 (see Lemmas 2.1, 2.2). From this reason
it is useful to propose a difference scheme to obtain an approximate solution
corresponding to a larger class of initial data. This is precisely what we shall do in
the following.

First we remark that for sufficiently smooth solutions the equation (1.6) may
be written in the equivalent form

dt p0c0 dx
(3.1)

(3.2)

(3-3)

In the region [0, /] x [0, tj we choose a net consisting of points!
(;7z,», i = 0, . . . , NJ = 0, . . . , J, and ((/ + 1/2)A,», / = 0, . . . , N- 1, j = 0, . . . , J, \
where h= UN, K— tJJ. Using the notations

y =

y<=-^(y-y\ y*^(y-y\ y{a)=ay+(i-°)y, oe[o,ij
and the integro-interpolation method (see fll], [9]), to the system (3.1), (3.2),
(1.7) we associate the following three-parameter difference scheme

f,
Poco

(3.4)

(3.5)

= 0. (3.6)
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Corresponding to the initial and boundary conditions (1.8), (3.3), (1.9) we choose

/55p-o,*iiu,#-i, <3-7)

qf = 0,1 = 0,...,tf, qJ
0 = qJ

N = OJ = 0,..., J. (3.8)

Here we have supposed ®(x) to be integrable on [0, /].

Now we want to compute the solution T , q of the difference scheme
(3.4X3.8). First from (3.5), (3.6), (3.7)2, (3.8), we deduce that

Sz = ~ —' (3.9)
KQ

Then deriving the equation (3.4) with respect to x, (3.5) with respect to 7 and
making use of (3.9), after some calculation we get the following difference equation for q

Using the method of separated variables we find the nonvanishing solution
of (3.10), (3.8) as

where
n=\

,7 = , . . . , ,y = 0,...,J, (3.11)

n )J,

, i fA B >0,

ifAn=0,

if AB < 0, an = constant,
(3.12)

K.

T2

,T 1 1. ,_ T K / Y I • 2 ftH-lop— H—(a,-a,) sm —>
rl T V - 'J 2AT/

2«T
—(a, + a3 - 2a,a3)sin2 — ± -y/A^ /

.
a,a, sm

ax

(3.13)

(3.14)



240 loana Luca

K
a = 1 +—(

T

Now the difference equations (3.4), (3.6) give

where

at a

Po^o

while r1 is computed by means of (3.4), (3.6) atj = 0 and of (3.7) as

TT\ , K '

r -«f Poco at

The solution of (3.16), (3.17) is

7-2

TJ = ~ J l

14

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

In (3.16)-(3.19) we have omitted to write the indices /', / + 1/2.
In order to find the constants <XB, n = 1, ..., N- 1 we write the equation

(3.5) forj - 0 and replace q1, T1 with the values given by (3.11), (3.18). Thus
we get the system

i= 1, ..., ./V- 1, having a unique solution bl
n, n= I, ...,N- I .

Since
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and, hence,

(3.21)

if we want to know the internal energy corresponding to the solution of the problem P

we must determine / J . It is not difficult to show that

= —1
a P0c0a

(3.22)

if a = 0, 7 = 2,...,.
where

tfJ-i =1(7-0 (3.23)

Now we establish sufficient conditions for the stability of the difference
scheme (3.4)-(3.8). The equation (3.10) for q can be put into the form

(3.24)

where

, A = A, Aq = -qa,

and £ is the identity operator. If B > 0 and J? — A > 0 , then the difference
4

equation (3 .21) is stable with respect to the initial data q°, ql (see [1 1], 6.3).
Using the inequality (see [11], 2.3.3)

we obtain that if

M + 4p(a, +a3 -l)>0, (3.25)

then B > 0. In exactly the same way it results that the following inequalities
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T

2a M +
K I2 V ' 2 A

»,-i)>«. 4,-^-i)-;

are sufficient in order to have /? A > 0.
4

(3.26)

The difference scheme (3.16)-(3.18) is stable (with respect to the initial data

T ° and to the right-hand side, in the sense precised in [11], 6.1.5), if

<1, viz. M-<2a
T

(3.27)

(see [11], 6.1.6, Satz 2 with L = I/T).
We shall analyse the conditions (3.25)-(3.27) for some particular values of

the parameters ap cr2> a3.
(/) CTZ = CTS = 0. In this case the inequalities (3.25)-(3.27) become

(3.28)

But we want our scheme to be valid for suflBciently small T (T « 10"11 sec for
metals, see [8]) and, therefore, the conditions (3.28) can be hardly satisfied. It
remains to show otherwise if our scheme is stable or not. Namely, we observe that

An • 24/3 smF 2N
nn
2N

q- = --
"

, T -> 0,

and, therefore,
(3. 10) is unstable

-> oo if T -> 0. Consequently the difference equation
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(/'/') a, = a2 = a3 = 1. It is easy to see that the conditions (3.25)-(3.27) are
satisfied for every h, K > O.Thus the difference scheme (3.4)-(3.8)
is absolutely stable.

(tit) cjj = a2 = a3= 1/2. Again the conditions (3.25)-(3.27) are satisfied for
every h, K > 0, hence the difference scheme (3.4)-(3.8) is absolutely stable.

Finally, an elementary analysis shows that on sufficiently smooth solutions
of the problem P the order of approximation of the difference scheme (3.4)-(3.8)
is O (h2 + K2) if cjj = cr2 = a3= 1/2 and O(h2 + K) otherwise.

4. NUMERICAL RESULTS

It this Section we carry out a numerical examination of the problem
treated previously by choosing a rigid conductor whose material constants
are p0 = 1, c0 = 1, KO = 1, f = 1, M = 1 and M = 2. We suppose / = 2n.

First we consider the initial datum

which satisfies the requirements of the Lemma 2.2. Therefore, the problem P
has a classical solution which can be calculated by means of the series
(2.14)— (2.17). Since the cosine Fourier coefficients of ®(x) have the property

10
w

4 4t n

for the remainders R^(x,t), R*(x,i) we can find a better estimation than that
delivered by Lemma 2.3, namely

Consequently we obtain that

forM=l, forM =

For «= 11 the calculated temperature T((i + 1/2) h, jk\ i = 0, ..., 9 and heat flux
q(ih, JK), i = 0, ..., 10, h = n/5, K= 0.1, for various j are plotted for M = 1 in
Figures 1, 2 and forM= 2 in Figures 3, 4.
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Fig. 1. Variation of temperature (internal energy) with space for M- \.
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Fig. 3. Variation of temperature with space for M = 2.
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Fig. 4. Variation of heat flux with space for M= 2.
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We find exactly the same Figures 1-4 if we determine the solution T, q by
using the difference scheme (3.4)-(3.8) corresponding to cr, = a2= a3= 0.5,
h = Ti/5, K= 0.1. For comparison we give the Table 1 which shows the values
r((/ + 1/2) h, 25K), i = 0, ..., 9 for M= \ as calculated by means of

(I) the series (2.14H2.17),
(H) the difference scheme (3.4M3.8),
(III) the difference scheme presented by Godunov in [4], § 9, with

h = 7T/5, K = 0.1 (the stability condition being KU^Ih < 1).

Table 1

Temperature T calculated at / = 2.5

for M = 1 by three different methods.

X

0.314

0.942
1.571

2.199
2.827
3.456

4.084
4.712
5.341

5.969

I

90.611

89.131
86.287
82.309
77.535
72.464
67.690
63.712
60.868

59.388

n

90.612
89.131
86.291

82.302
77.527
72.472
67.697

63.708
60.868

59.387

m

87.979

86.721
84.317

80.992
77.066

72.933
69.007
65.682
63.278
62.020

Figure 3 reveals a distinct behaviour of the temperature at "small" times
from that depicted in Figure 1. However the internal energy (2.30), (2.31) corres-
sponding to M = 2 manifestes the same behaviour as does the internal energy
corresponding to M = 1 (see Figs 1,5). Figures 1-5 show that the growth of the
parameter M delays the reach of the equilibrium.

Now we search the temperature and heat flux field generated by the initial datum

2, if* £[-,/] .

The approximate solution of the problem P obtained by means of the difference
scheme (3.4)-(3.8) corresponding to CTJ =a2 = a3 = l , /z = 7r/15, Ar=0.1 is depicted
forM= 1 in Figures 6, 7 and for M= 2 in Figures 8, 9.
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Fig. 5. Variation of internal energy with space for M = 2.
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Fig. 6. Variation of temperature (internal energy) with space for M= 1.
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Fig. 9. Variation of heat flux with space for M= 2.
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Fig. 10. Variation of internal energy with space for M=2.
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Again the temperature for M = 2 has another behaviour than that
corresponding to M = 1. But the variation of the internal energy calculated via
(3.21>-(3.23)forM=2 (see Fig. 10) is of the same type as for M = 1 (see Fig. 6).

As before in the case of the classical solution we have used the difference
scheme [4], §9 with h = it/15, /r= 0.1 in order to find the approximate solution
corresponding to M = 1. We have obtained only slight differences between the
results delivered by the two difference schemes. To illustrate this we give the
Table 2 which shows the values T((i + l/2)h, 5x), / = 0, ..., 29, obtained by means of

(I) the difference scheme (3.4H3-8),
(II) the difference scheme presented by Godunov in [4], §9.

Table 2

Temperature T calculated at / = 0.5 for M= 1 by means of two difference schemes

X

0.105

0.314

0.524

0.733

0.942

1.152

1.361

1.571

1.780

1.990

2.199

2.409

2.618

2.827

3.037

I

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.001

1.004

1.015

1.050

1.143

1.323

1.507

n

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.012

1.076

1.211

1.362

1.465

X

3.246

3.456

3.665

3.875

4.084

4.293

4.503

4.712

4.922

5.131

5.341

5.550

5.760

5.969

6.178

I

1.492

1.676

1.856

1.949

1.984

1.995

1.998

1.999

1.999

1.999

1.999

2.000

2.000

2.000

2.000

n

1.534

1.637

1.788

1.923

1.987

2.000

2.000

2.000

2.000

2.000

2.000

2.000

2.000

2.000

2.000
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